2022-2023学年浙江省宁波鄞州区五校联考数学九上期末检测模拟试题含解析_第1页
2022-2023学年浙江省宁波鄞州区五校联考数学九上期末检测模拟试题含解析_第2页
2022-2023学年浙江省宁波鄞州区五校联考数学九上期末检测模拟试题含解析_第3页
2022-2023学年浙江省宁波鄞州区五校联考数学九上期末检测模拟试题含解析_第4页
2022-2023学年浙江省宁波鄞州区五校联考数学九上期末检测模拟试题含解析_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.为增加绿化面积,某小区将原来正方形地砖更换为如图所示的正八边形植草砖,更换后,图中阴影部分为植草区域,设正八边形与其内部小正方形的边长都为a,则阴影部分的面积为()A.2a2 B.3a2 C.4a2 D.5a22.下列命题错误的是()A.经过三个点一定可以作圆B.经过切点且垂直于切线的直线必经过圆心C.同圆或等圆中,相等的圆心角所对的弧相等D.三角形的外心到三角形各顶点的距离相等3.已知=3,=5,且与的方向相反,用表示向量为()A. B. C. D.4.下列立体图形中,主视图是三角形的是(

).A. B. C. D.5.若△ABC~△A′B'C′,相似比为1:2,则△ABC与△A'B′C'的周长的比为()A.2:1 B.1:2 C.4:1 D.1:46.如图,将绕点逆时针旋转70°到的位置,若,则()A.45° B.40° C.35° D.30°7.二次函数y=ax2+bx+c(a≠1)的图象如图所示,其对称轴为直线x=﹣1,与x轴的交点为(x1,1)、(x2,1),其中1<x2<1,有下列结论:①b2﹣4ac>1;②4a﹣2b+c>﹣1;③﹣3<x1<﹣2;④当m为任意实数时,a﹣b≤am2+bm;⑤3a+c=1.其中,正确的结论有()A.①③④ B.①②④ C.③④⑤ D.①③⑤8.某超市一月份的营业额为36万元,三月份的营业额为48万元,设每月的平均增长率为x,则可列方程为()A.48(1﹣x)2=36 B.48(1+x)2=36 C.36(1﹣x)2=48 D.36(1+x)2=489.如图,将Rt△ABC绕直角顶点C顺时针旋转90°得到△DEC,连接AD,若∠BAC=26°,则∠ADE的度数为()A.13° B.19° C.26° D.29°10.如图,直线分别与⊙相切于,且∥,连接,若,则梯形的面积等于()A.64 B.48 C.36 D.2411.如图,AB是⊙O的弦,∠BAC=30°,BC=2,则⊙O的直径等于()A.2 B.3 C.4 D.612.已知关于x的二次方程有两个实数根,则k的取值范围是()A. B.且 C. D.且二、填空题(每题4分,共24分)13.如图,在中,,以点A为圆心,2为半径的与BC相切于点D,交AB于点E,交AC于点F,点P是上的一点,且,则图中阴影部分的面积为______.14.如图,在△ABC中,D,E分别是AC,BC边上的中点,则三角形CDE的面积与四边形ABED的面积比等于____________15.如图,CD是的直径,E为上一点,,A为DC延长线上一点,AE交于点B,且,则的度数为__________.

16.在正方形ABCD中,对角线AC、BD相交于点O.如果AC=3,那么正方形ABCD的面积是__________.17.甲、乙两车从A地出发,沿同一路线驶向B地.甲车先出发匀速驶向B地,40min后,乙车出发,匀速行驶一段时间后,在途中的货站装货耗时半小时.由于满载货物,为了行驶安全,速度减少了50km/h,结果与甲车同时到达B地,甲乙两车距A地的路程()与乙车行驶时间()之间的函数图象如图所示,则下列说法:①②甲的速度是60km/h;③乙出发80min追上甲;④乙车在货站装好货准备离开时,甲车距B地150km;⑤当甲乙两车相距30km时,甲的行驶时间为1h、3h、h;其中正确的是__________.18.分解因式:3a2b+6ab2=____.三、解答题(共78分)19.(8分)甲、乙、丙、丁共四支篮球队要进行单循环积分赛(每两个队间均要比赛一场),每天比赛一场,经抽签确定比赛场次顺序.(1)甲抽到第一场出场比赛的概率为;(2)用列表法或树状图计算甲、乙两队抽得第一场进行比赛的概率.20.(8分)如图,在Rt△ABC中,∠BAC=90°,BD是角平分线,以点D为圆心,DA为半径的⊙D与AC相交于点E.(1)求证:BC是⊙D的切线;(2)若AB=5,BC=13,求CE的长.21.(8分)如图,已知AD•AC=AB•AE,∠DAE=∠BAC.求证:△DAB∽△EAC.22.(10分)已知:如图,平行四边形,是的角平分线,交于点,且,;求的度数.23.(10分)如图,已知反比例函数与一次函数的图象在第一象限相交于点.(1)试确定这两个函数的表达式;(2)求出这两个函数图象的另一个交点的坐标,并根据图像写出使反比例函数的值大于一次函数的值的取值范围.24.(10分)甲、乙、丙三个球迷决定通过抓阄来决定谁得到仅有的一张球票.他们准备了三张纸片,其中一张上画了个五星,另两张空白,团成外观一致的三个纸团.抓中画有五角星纸片的人才能得到球票.刚要抓阄,甲问:“谁先抓?先抓的人会不会抓中的机会比别人大?”你认为他的怀疑有没有道理?谈谈你的想法并用列表或画树状图方法说明原因.25.(12分)在平面直角坐标系中,点到直线的距离即为点到直线的垂线段的长.(1)如图1,取点M(1,0),则点M到直线l:y=x﹣1的距离为多少?(2)如图2,点P是反比例函数y=在第一象限上的一个点,过点P分别作PM⊥x轴,作PN⊥y轴,记P到直线MN的距离为d0,问是否存在点P,使d0=?若存在,求出点P的坐标,若不存在,请说明理由.(3)如图3,若直线y=kx+m与抛物线y=x2﹣4x相交于x轴上方两点A、B(A在B的左边).且∠AOB=90°,求点P(2,0)到直线y=kx+m的距离最大时,直线y=kx+m的解析式.26.阅读下面材料,完成(1)-(3)题.数学课上,老师出示了这样一道题:如图,△ABC中,D为BC中点,且AD=AC,M为AD中点,连结CM并延长交AB于N.探究线段AN、MN、CN之间的数量关系,并证明.同学们经过思考后,交流了自已的想法:小明:“通过观察和度量,发现线段AN、AB之间存在某种数量关系.”小强:“通过倍长不同的中线,可以得到不同的结论,但都是正确的,大家就大胆的探究吧.”小伟:“通过构造、证明相似三角形、全等三角形,就可以将问题解决.”......老师:“若其他条件不变,设AB=a,则可以用含a的式子表示出线段CM的长.”(1)探究线段AN、AB之间的数量关系,并证明;(2)探究线段AN、MN、CN之间的数量关系,并证明;(3)设AB=a,求线段CM的长(用含a的式子表示).

参考答案一、选择题(每题4分,共48分)1、A【分析】正多边形和圆,等腰直角三角形的性质,正方形的性质.图案中间的阴影部分是正方形,面积是,由于原来地砖更换成正八边形,四周一个阴影部分是对角线为的正方形的一半,它的面积用对角线积的一半【详解】解:.故选A.2、A【解析】选项A,经过不在同一直线上的三个点可以作圆;选项B,经过切点且垂直于切线的直线必经过圆心,正确;选项C,同圆或等圆中,相等的圆心角所对的弧相等,正确;选项D,三角形的外心到三角形各顶点的距离相等,正确;故选A.3、D【分析】根据=3,=5,且与的方向相反,即可用表示向量.【详解】=3,=5,=,与的方向相反,故选D.【点睛】考查了平面向量的知识,注意平面向量的正负表示的是方向.4、B【分析】根据从正面看得到的图形是主视图,可得图形的主视图.【详解】A、C、D主视图是矩形,故A、C、D不符合题意;B、主视图是三角形,故B正确;故选B.【点睛】本题考查了简单几何体的三视图,圆锥的主视图是三角形.5、B【分析】根据相似三角形的周长比等于相似比即可得出结论.【详解】解:∵∽,相似比为1:1,∴与的周长的比为1:1.故选:B.【点睛】此题考查的是相似三角形的性质,掌握相似三角形的周长比等于相似比是解决此题的关键.6、D【分析】首先根据旋转角定义可以知道,而,然后根据图形即可求出.【详解】解:∵绕点逆时针旋转70°到的位置,∴,而,∴故选D.【点睛】此题主要考查了旋转的定义及性质,其中解题主要利用了旋转前后图形全等,对应角相等等知识.7、A【分析】根据函数图象和二次函数的性质,可以判断各个小题中的结论是否成立,本题得以解决.【详解】∵二次函数y=ax2+bx+c(a≠1)的图象与x轴有两个交点,∴b2﹣4ac>1,故①正确;∵该函数图象的对称轴是x=﹣1,当x=1时的函数值小于﹣1,∴x=﹣2时的函数值和x=1时的函数值相等,都小于﹣1,∴4a﹣2b+c<﹣1,故②错误;∵该函数图象的对称轴是x=﹣1,与x轴的交点为(x1,1)、(x2,1),其中1<x2<1,∴﹣3<x,1<﹣2,故③正确;∵当x=﹣1时,该函数取得最小值,∴当m为任意实数时,a﹣b≤am2+bm,故④正确;∵1,∴b=2a.∵x=1时,y=a+b+c>1,∴3a+c>1,故⑤错误.故选:A.【点睛】本题考查了二次函数图象上点的坐标特征、二次函数图象与系数的关系、二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.8、D【分析】主要考查增长率问题,一般用增长后的量=增长前的量×(1+增长率),如果设教育经费的年平均增长率为x,然后根据已知条件可得出方程.【详解】∵某超市一月份的营业额为36万元,每月的平均增长率为x,∴二月份的营业额为36(1+x),三月份的营业额为36(1+x)×(1+x)=36(1+x)2.∴根据三月份的营业额为48万元,可列方程为36(1+x)2=48.故选D.【点睛】本题考查了一元二次方程的应用,找到关键描述语,就能找到等量关系,是解决问题的关键.同时要注意增长率问题的一般规律.9、B【分析】根据旋转的性质可得AC=CD,∠CDE=∠BAC,再判断出△ACD是等腰直角三角形,然后根据等腰直角三角形的性质求出∠CDA=45°,根据∠ADE=∠CDA﹣∠CDE,即可求解.【详解】∵Rt△ABC绕其直角顶点C按顺时针方向旋转90°后得到Rt△DEC,∴AC=CD,∠CDE=∠BAC=26°,∴△ACD是等腰直角三角形,∴∠CDA=45°,∴∠ADE=∠CDA﹣∠CDE=45°﹣26°=19°.故选:B.【点睛】本题主要考查旋转的性质和等腰直角三角形的判定和性质定理,掌握等腰直角三角形的性质,是解题的关键,10、B【分析】先根据切线长定理得出,然后利用面积求出OF的长度,即可得到圆的半径,最后利用梯形的面积公式即可求出梯形的面积.【详解】连接OF,∵直线分别与⊙相切于,∴.在和中,∴,∴.在和中,∴,∴.∵,.∵,.,∴,,∴梯形的面积为.故选:B.【点睛】本题主要考查切线的性质,切线长定理,梯形的面积公式,掌握切线的性质和切线长定理是解题的关键.11、C【分析】如图,作直径BD,连接CD,根据圆周角定理得到∠D=∠BAC=30°,∠BCD=90°,根据直角三角形的性质解答.【详解】如图,作直径BD,连接CD,∵∠BDC和∠BAC是所对的圆周角,∠BAC=30°,∴∠BDC=∠BAC=30°,∵BD是直径,∠BCD是BD所对的圆周角,∴∠BCD=90°,∴BD=2BC=4,故选:C.【点睛】本题考查圆周角定理,在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;半圆(或直径)所对的圆周角是直角;90°圆周角所对的弦是直径;熟练掌握圆周角定理是解题关键.12、B【分析】根据一元二次方程根的判别式让∆=b2−4ac≥1,且二次项的系数不为1保证此方程为一元二次方程.【详解】解:由题意得:且,解得:且,故选:B.【点睛】本题考查了一元二次方程根的判别式,方程有2个实数根应注意两种情况:∆≥1,二次项的系数不为1.二、填空题(每题4分,共24分)13、【分析】图中阴影部分的面积=S△ABC-S扇形AEF.由圆周角定理推知∠BAC=90°.【详解】解:连接AD,在⊙A中,因为∠EPF=45°,所以∠EAF=90°,AD⊥BC,S△ABC=×BC×AD=×4×2=4S扇形AFDE=,所以S阴影=4-故答案为:【点睛】本题考查了切线的性质与扇形面积的计算.求阴影部分的面积时,采用了“分割法”.14、1:3【分析】根据中位线的定义可得:DE为△ABC的中位线,再根据中位线的性质可得DE∥AB,且,从而证出△CDE∽△CAB,根据相似三角形的性质即可求出,从而求出三角形CDE的面积与四边形ABED的面积比.【详解】解:∵D,E分别是AC,BC边上的中点,∴DE为△ABC的中位线∴DE∥AB,且∴△CDE∽△CAB∴∴故答案为:1:3.【点睛】此题考查的是中位线的性质和相似三角形的判定及性质,掌握中位线的性质、用平行证相似和相似三角形的面积比等于相似比的平方是解决此题的关键.15、16°【分析】连接OB,根据,可得,设∠A=x,则∠AOB=x,列方程求出x的值即可.【详解】连接OB设∠A=x,则∠AOB=x即∠A的度数为16°故答案为:16°.【点睛】本题考查了圆的角度问题,掌握等边对等角、三角形外角定理是解题的关键.16、1【分析】由正方形的面积公式可求解.【详解】解:∵AC=3,

∴正方形ABCD的面积=3×3×=1,

故答案为:1.【点睛】本题考查了正方形的性质,熟练运用正方形的性质是解题的关键.17、②③【分析】根据一次函数的性质和该函数的图象对各项进行求解即可.【详解】∵线段DE代表乙车在途中的货站装货耗时半小时,∴a=4+0.5=4.5(小时),即①不成立;∵40分钟=小时,∴甲车的速度为460÷(7+)=60(千米/时),即②成立;设乙车刚出发时的速度为x千米/时,则装满货后的速度为(x﹣50)千米/时,根据题意可知:4x+(7﹣4.5)(x﹣50)=460,解得:x=1.乙车发车时,甲车行驶的路程为60×=40(千米),乙车追上甲车的时间为40÷(1﹣60)=(小时),小时=80分钟,即③成立;乙车刚到达货站时,甲车行驶的时间为(4+)小时,此时甲车离B地的距离为460﹣60×(4+)=180(千米),即④不成立.设当甲乙两车相距30km时,甲的行驶时间为x小时,由题意可得1)乙车未出发时,即解得∵∴是方程的解2)乙车出发时间为解得解得3)乙车出发时间为解得∵所以不成立4)乙车出发时间为解得故当甲乙两车相距30km时,甲的行驶时间为h、1h、3h、h,故⑤不成立故答案为:②③.【点睛】本题考查了两车的路程问题,掌握一次函数的性质是解题的关键.18、3ab(a+2b)【分析】观察可得此题的公因式为:3ab,提取公因式即可求得答案.【详解】解:3a2b+6ab2=3ab(a+2b)故答案为:3ab(a+2b)三、解答题(共78分)19、(1);(2)【分析】(1)直接利用概率公式计算可得;(2)先画树状图列出所有等可能结果,再从中找到符合条件的结果数,继而利用概率公式求解可得.【详解】解答】解:(1)甲抽到第一场出场比赛的概率为,故答案为:;(2)画树状图得:∵共有12种等可能的结果,恰好选中甲、乙两队的有2种情况,∴甲、乙两队抽得第一场进行比赛的概率为.【点睛】本题考查了用列表法或树状图计算概率的方法,概率=所求情况数与总情况数之比20、(1)证明详见解析;(2).【解析】试题分析:(1)过点D作DF⊥BC于点F,根据角平分线的性质得到AD=DF.根据切线的判定定理即可得到结论;(2)根据切线的性质得到AB=FB.根据和勾股定理列方程即可得到结论.试题解析:(1)证明:过点D作DF⊥BC于点F,∵∠BAD=90°,BD平分∠ABC,∴AD=DF.∵AD是⊙D的半径,DF⊥BC,∴BC是⊙D的切线;(2)解:∵∠BAC=90°.∴AB与⊙D相切,∵BC是⊙D的切线,∴AB=FB.∵AB=5,BC=13,∴CF=8,AC=1.在Rt△DFC中,设DF=DE=r,则,解得:r=.∴CE=.考点:切线的判定;圆周角定理.21、证明见解析【分析】根据相似三角形的判定定理即可证明△DAB∽△EAC.【详解】证明:∵AD•AC=AB•AE,∴,∵∠DAE=∠BAC,∴∠DAE﹣∠BAE=∠BAC﹣∠BAE,∴∠DAB=∠EAC,∴△DAB∽△EAC.【点睛】本题考查三角形相似的判定定理,正确理解三角形相似的判定定理是本题解题的关键.22、50°【分析】根据平行四边形的性质求出CD=CE,得到AB=BE,所以根据,得到的度数【详解】证明:四边形是平行四边形是的角平分线四边形是平行四边形【点睛】本题考查平行四边形的性质,由角平分线得到相等的角,再利用平行四边形的性质和等角对等边的性质求解,得出AB=BE是解决问题的关键.23、(1),;(2)x<-2,或0<x<1【分析】(1)把A(1,-k+4)代入解析式,即可求出k的值;把求出的A点坐标代入一次函数的解析式,即可求出b的值;从而求出这两个函数的表达式;

(2)将两个函数的解析式组成方程,其解即为另一点的坐标.当一次函数的值小于反比例函数的值时,直线在双曲线的下方,直接根据图象写出一次函数的值小于反比例函数的值x的取值范围.【详解】解:(1)由题意,得,∴k=2,∴A(1,2),2=b+1∴b=1,反比例函数表达式为:,一次函数表达式为:.(2)又由题意,得,,解得∴B(-2,-1),∴当x<-2,或0<x<1时,反比例函数大于一次函数的值.【点睛】本题考查了一次函数与反比例函数的综合,能正确看图象是解题的关键.24、甲的怀疑没有道理,先抓后抓抓中的机会是一样的,图表见解析【分析】先正确画出树状图,根据树状图求出每人抓到五星的概率即可解答.【详解】答:甲的怀疑没有道理,先抓后抓抓中的机会是一样的.用树状图列举结果如下:从图中发现无论三个人谁先抓阄,抓到五星纸片的概率都是一样的,各为.【点睛】本题考查了游戏的公平性:判断游戏公平性需要先计算每个事件的概率,然后比较概率的大小,概率相等就公平,否则就不公平.25、(1);(2)点P(,2)或(2,);(3)y=﹣2x+1【分析】(1)如图1,设直线l:y=x﹣1与x轴,y轴的交点为点A,点B,过点M作ME⊥AB,先求出点A,点B坐标,可得OA=2,OB=1,AM=1,由勾股定理可求AB长,由锐角三角函数可求解;(2)设点P(a,),用参数a表示MN的长,由面积关系可求a的值,即可求点P坐标;(3)如图3,过点A作AC⊥x轴于点C,过点B作BD⊥y轴于点D,设点A(a,a2﹣4a),点B(b,b2﹣4b),通过证明△AOC∽△BOD,可得ab﹣4(a+b)+17=0,由根与系数关系可求a+b=k+4,ab=﹣m,可得y=kx+1﹣4k=k(x﹣4)+1,可得直线y=k(x﹣4)+1过定点N(4,1),则当PN⊥直线y=kx+m时,点P到直线y=kx+m的距离最大,由待定系数法可求直线PN的解析式,可求k,m的值,即可求解.【详解】解:(1)如图1,设直线l:y=x﹣1与x轴,y轴的交点为点A,点B,过点M作ME⊥AB,∵直线l:y=x﹣1与x轴,y轴的交点为点A,点B,∴点A(2,0),点B(0,﹣1),且点M(1,0),∴AO=2,BO=1,AM=OM=1,∴AB===,∵tan∠OAB=tan∠MAE=,∴,∴ME=,∴点M到直线l:y=x﹣1的距离为;(2)设点P(a,),(a>0)∴OM=a,ON=,∴MN==,∵PM⊥x轴,PN⊥y轴,∠MON=10°,∴四边形PMON是矩形,∴S△PMN=S矩形PMON=2,∴×MN×d0=2,∴×=4,∴a4﹣10a2+16=0,∴a1=2,a2=﹣2(舍去),a3=2,a4=﹣2(舍去),∴点P(,2)或(2,),(3)如图3,过点A作AC⊥x轴于点C,过点B作BD⊥y轴于点D,设点A(a,a2﹣4a),点B(b,b2﹣4b),∵∠AOB=10°,∴∠AOC+∠BOD=10°,且∠AOC+∠CAO=10°,∴∠BOD=∠CAO,且∠ACO=∠BDO,∴△AOC∽△BOD,∴,∴∴ab﹣4

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论