2022-2023学年山西省运城运康中学数学九上期末联考模拟试题含解析_第1页
2022-2023学年山西省运城运康中学数学九上期末联考模拟试题含解析_第2页
2022-2023学年山西省运城运康中学数学九上期末联考模拟试题含解析_第3页
2022-2023学年山西省运城运康中学数学九上期末联考模拟试题含解析_第4页
2022-2023学年山西省运城运康中学数学九上期末联考模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.已知二次函数y=a(x﹣h)2+k(a>0),其图象过点A(0,2),B(8,3),则h的值可以是()A.6 B.5 C.4 D.32.抛物线y=(x-4)(x+2)的对称轴方程为()A.直线x=-2 B.直线x=1 C.直线x=-4 D.直线x=43.的绝对值为()A. B. C. D.4.在平面直角坐标系中,把点绕原点顺时针旋转,所得到的对应点的坐标为()A. B. C. D.5.如图,直线l和双曲线y=(k>0)交于A、B两点,P是线段AB上的点(不与A、B重合),过点A、B、P分别向x轴作垂线,垂足分别为C、D、E,连接OA、OB、OP,设△AOC的面积为S1、△BOD的面积为S2、△POE的面积为S3,则()A.S1<S2<S3 B.S1>S2>S3 C.S1=S2>S3 D.S1=S2<S36.在,,,则的值是()A. B. C. D.7.如图,在平面直角坐标系中,四边形为菱形,,,,则对角线交点的坐标为()A. B. C. D.8.如图,四边形ABCD内接于⊙O,若∠BOD=160°,则∠BAD的度数是()A.60° B.80° C.100° D.120°9.已知二次函数的图象(0≤x≤4)如图,关于该函数在所给自变量的取值范围内,下列说法正确的是()A.有最大值1.5,有最小值﹣2.5 B.有最大值2,有最小值1.5C.有最大值2,有最小值﹣2.5 D.有最大值2,无最小值10.如图,AB为⊙O的弦,半径OC交AB于点D,AD=DB,OC=5,OD=3,则AB的长为()A.8 B.6 C.4 D.3二、填空题(每小题3分,共24分)11.如图,已知AB,CD是☉O的直径,弧AE=弧AC,∠AOE=32°,那么∠COE的度数为________度.12.如图,在Rt△ABC中∠B=50°,将△ABC绕直角顶点A顺时针旋转得到△ADE.当点C在B1C1边所在直线上时旋转角∠BAB1=____度.13.边心距为的正六边形的半径为_______.14.如图,在Rt△ABC中,∠C=90°,CA=CB=1.分别以A、B、C为圆心,以AC为半径画弧,三条弧与边AB所围成的阴影部分的面积是______.15.如图,将面积为32的矩形ABCD沿对角线BD折叠,点A的对应点为点P,连接AP交BC于点E.若BE=,则AP的长为_____.16.二次函数的顶点坐标___________.17.甲、乙两车从A地出发,沿同一路线驶向B地.甲车先出发匀速驶向B地,40min后,乙车出发,匀速行驶一段时间后,在途中的货站装货耗时半小时.由于满载货物,为了行驶安全,速度减少了50km/h,结果与甲车同时到达B地,甲乙两车距A地的路程()与乙车行驶时间()之间的函数图象如图所示,则下列说法:①②甲的速度是60km/h;③乙出发80min追上甲;④乙车在货站装好货准备离开时,甲车距B地150km;⑤当甲乙两车相距30km时,甲的行驶时间为1h、3h、h;其中正确的是__________.18.在Rt△ABC中,∠C=90°,若AC=3,AB=5,则cosB的值为__________.三、解答题(共66分)19.(10分)我市某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种在自然光照且温度为的条件下生长最快的新品种.下图是某天恒温系统从开启到关闭及关闭后,大棚内温度y(°C)随时间x(小时)变化的函数图象,其中段是双曲线的一部分.请根据图中信息解答下列问题:(1)恒温系统在这天保持大棚内温度的时间有________小时;(2)当时,大棚内的温度约为多少度?20.(6分)如图,锐角三角形中,,分别是,边上的高,垂足为,.(1)证明:.(2)若将,连接起来,则与能相似吗?说说你的理由.21.(6分)一个不透明的袋子中装有3个标号分别为1、2、3的完全相同的小球,随机地摸出一个小球不放回,再随机地摸出一个小球.(1)采用树状图或列表法列出两次摸出小球出现的所有可能结果;(2)求摸出的两个小球号码之和等于4的概率.22.(8分)为满足市场需求,某超市在五月初五“端午节”来临前夕,购进一种品牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?(3)为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?23.(8分)如图,内接于,且为的直径.的平分线交于点,过点作的切线交的延长线于点,过点作于点,过点作于点.(1)求证:;(2)试猜想线段,,之间有何数量关系,并加以证明;(3)若,,求线段的长.24.(8分)一个不透明的口袋中有三个小球,上面分别标注数字1,2,3,每个小球除所标注数字不同外,其余均相同.小勇先从口袋中随机摸出一个小球,记下数字后放回并搅匀,再次从口袋中随机摸出一个小球.用画树状图(或列表)的方法,求小勇两次摸出的小球所标数字之和为3的概率.25.(10分)镇江某特产专卖店销售某种特产,其进价为每千克40元,若按每千克60元出售,则平均每天可售出100千克,后来经过市场调查发现,单价每降低1元,平均每天的销售量增加10千克,若专卖店销售这种特产想要平均每天获利2240元,且销量尽可能大,则每千克特产应定价多少元?26.(10分)如图,抛物线y=﹣x2+2x+6交x轴于A,B两点(点A在点B的右侧),交y轴于点C,顶点为D,对称轴分别交x轴、线段AC于点E、F.(1)求抛物线的对称轴及点A的坐标;(2)连结AD,CD,求△ACD的面积;(3)设动点P从点D出发,沿线段DE匀速向终点E运动,取△ACD一边的两端点和点P,若以这三点为顶点的三角形是等腰三角形,且P为顶角顶点,求所有满足条件的点P的坐标.

参考答案一、选择题(每小题3分,共30分)1、D【解析】解:根据题意可得当0<x<8时,其中有一个x的值满足y=2,则对称轴所在的位置为0<h<4故选:D【点睛】本题考查二次函数的性质,利用数形结合思想解题是关键.2、B【解析】把抛物线解析式整理成顶点式解析式,然后写出对称轴方程即可.【详解】解:y=(x+2)(x-4),=x2-2x-8,=x2-2x+1-9,=(x-1)2-9,∴对称轴方程为x=1.故选:B.【点睛】本题考查了二次函数的性质,是基础题,把抛物线解析式整理成顶点式解析式是解题的关键.3、C【分析】根据绝对值的定义即可求解.【详解】的绝对值为故选C.【点睛】此题主要考查绝对值,解题的关键是熟知其定义.4、C【分析】根据题意得点P点P′关于原点的对称,然后根据关于原点对称的点的坐标特点即可得解.【详解】∵P点坐标为(3,-2),∴P点的原点对称点P′的坐标为(-3,2).故选C.【点睛】本题主要考查坐标与图形变化-旋转,解此题的关键在于熟练掌握其知识点.5、D【分析】根据双曲线的解析式可得所以在双曲线上的点和原点形成的三角形面积相等,因此可得S1=S2,设OP与双曲线的交点为P1,过P1作x轴的垂线,垂足为M,则可得△OP1M的面积等于S1和S2,因此可比较的他们的面积大小.【详解】根据双曲线的解析式可得所以可得S1=S2=设OP与双曲线的交点为P1,过P1作x轴的垂线,垂足为M因此而图象可得所以S1=S2<S3故选D【点睛】本题主要考查双曲线的意义,关键在于,它代表的就是双曲线下方的矩形的面积.6、B【分析】根据互余两角三角函数的关系:sin2A+sin2B=1解答.【详解】∵在Rt△ABC中,∠C=90,∴∠A+∠B=90,∴sin2A+sin2B=1,sinA>0,∵sinB=,∴sinA==.故选B.【点睛】本题考查互余两角三角函数的关系.7、D【分析】过点作轴于点,由直角三角形的性质求出长和长即可.【详解】解:过点作轴于点,∵四边形为菱形,,∴,OB⊥AC,,∵,∴,∴,∴,,∴,∴.故选D.【点睛】本题考查了菱形的性质、勾股定理及含30°直角三角形的性质,正确作出辅助线是解题的关键.8、B【分析】根据圆周角定理即可得到结论.【详解】解:∵∠BOD=160°,∴∠BAD=∠BOD=80°,故选:B.【点睛】本题考查了圆周角定理,理解熟记圆周角定理是解题关键..9、C【详解】由图像可知,当x=1时,y有最大值2;当x=4时,y有最小值-2.5.故选C.10、A【分析】连接OB,根据⊙O的半径为5,CD=2得出OD的长,再由垂径定理的推论得出OC⊥AB,由勾股定理求出BD的长,进而可得出结论.【详解】解:连接OB,如图所示:∵⊙O的半径为5,OD=3,∵AD=DB,∴OC⊥AB,∴∠ODB=90°,∴BD=∴AB=2BD=1.故选:A.【点睛】本题主要考查的是圆中的垂径定理“垂直于弦的直径平分弦且平分这条弦所对的两条弧”,掌握垂径定理是解此题的关键.二、填空题(每小题3分,共24分)11、64【分析】根据等弧所对的圆心角相等求得∠AOE=∠COA=32°,所以∠COE=∠AOE+∠COA=64°.【详解】解:∵弧AE=弧AC,(已知)

∴∠AOE=∠COA(等弧所对的圆心角相等);

又∠AOE=32°,

∴∠COA=32°,

∴∠COE=∠AOE+∠COA=64°.

故答案是:64°.【点睛】本题考查圆心角、弧、弦的关系.在同圆或等圆中,两个圆心角、两条弧、两条弦三组量之间,如果有一组量相等,那么,它们所对应的其它量也相等.12、100【分析】根据Rt△ABC中∠B=50°,推出∠BCA=40°,根据旋转的性质可知,AC=AC1,∠BCA=∠C1=40°,求出∠CAC1的度数,即可求出∠BAB1的度数.【详解】∵Rt△ABC中∠B=50°,∴∠BCA=40°,∵△ABC绕直角顶点A顺时针旋转得到△ADE.当点C在B1C1边所在直线上,∴∠C1=∠BCA=40°,AC=AC1,∠CAB=∠C1AB1,∴∠ACC1=∠C1=40°,∴∠BAB1=∠CAC1=100°,故答案为:100.【点睛】本题考查了旋转的性质和等腰三角形的判定和性质,熟练掌握其判定和性质是解题的关键.13、8【分析】根据正六边形的性质求得∠AOH=30°,得到AH=OA,再根据求出OA即可得到答案.【详解】如图,正六边形ABCDEF,边心距OH=,∵∠OAB=60°,∠OHA=90°,∴∠AOH=30°,∴AH=OA,∵,∴,解得OA=8,即该正六边形的半径为8,故答案为:8.【点睛】此题考查正六边形的性质,直角三角形30度角的性质,勾股定理,正确理解正六边形的性质是解题的关键.14、1【分析】三条弧与边AB所围成的阴影部分的面积=三角形的面积-三个小扇形的面积.【详解】解:阴影部分的面积为:1×1÷1---=1-.故答案为1-.【点睛】本题主要考查了扇形的面积计算,关键是理解阴影部分的面积=三角形的面积-三个小扇形的面积.15、【解析】设AB=a,AD=b,则ab=32,构建方程组求出a、b值即可解决问题.【详解】设AB=a,AD=b,则ab=32,由∽可得:,∴,∴,∴,,设PA交BD于O,在中,,∴,∴,故答案为.【点睛】本题考查翻折变换、矩形的性质、勾股定理、相似三角形的判定与性质等知识,熟练掌握和应用相关的性质定理是解题的关键.16、(6,3)【分析】利用配方法将二次函数的解析式化成顶点式即可得出答案.【详解】由此可得,二次函数的顶点式为则顶点坐标为故答案为:.【点睛】本题考查了顶点式二次函数的性质,掌握二次函数顶点式的性质是解题关键.17、②③【分析】根据一次函数的性质和该函数的图象对各项进行求解即可.【详解】∵线段DE代表乙车在途中的货站装货耗时半小时,∴a=4+0.5=4.5(小时),即①不成立;∵40分钟=小时,∴甲车的速度为460÷(7+)=60(千米/时),即②成立;设乙车刚出发时的速度为x千米/时,则装满货后的速度为(x﹣50)千米/时,根据题意可知:4x+(7﹣4.5)(x﹣50)=460,解得:x=1.乙车发车时,甲车行驶的路程为60×=40(千米),乙车追上甲车的时间为40÷(1﹣60)=(小时),小时=80分钟,即③成立;乙车刚到达货站时,甲车行驶的时间为(4+)小时,此时甲车离B地的距离为460﹣60×(4+)=180(千米),即④不成立.设当甲乙两车相距30km时,甲的行驶时间为x小时,由题意可得1)乙车未出发时,即解得∵∴是方程的解2)乙车出发时间为解得解得3)乙车出发时间为解得∵所以不成立4)乙车出发时间为解得故当甲乙两车相距30km时,甲的行驶时间为h、1h、3h、h,故⑤不成立故答案为:②③.【点睛】本题考查了两车的路程问题,掌握一次函数的性质是解题的关键.18、【分析】先根据勾股定理求的BC的长,再根据余弦的定义即可求得结果.【详解】由题意得则故答案为:点睛:勾股定理的应用是初中数学极为重要的知识,与各个知识点联系极为容易,因而是中考的热点,在各种题型中均有出现,一般难度不大,需特别注意.三、解答题(共66分)19、(1)8;(2).【分析】找出临界点即可.【详解】(1)8;∵点在双曲线上,

∴,

∴解得:.

当时,,

所以当时,大棚内的温度约为.【点睛】理解临界点的含义是解题的关键.20、(1)见解析;(2)能,理由见解析.【分析】(1)根据已知利用有两个角相等的三角形相似判定即可;

(2)根据第一问可得到AD:AE=AC:AB,有一组公共角∠A,则可根据两组对应边的比相等且相应的夹角相等的两个三角形相似进行判定.【详解】证明:.证明:∵,分别是,边上的高,∴.∵,∴.若将,连接起来,则与能相似吗?说说你的理由.∵,∴.∴AD:AC=AE:AB∵,∴.【点睛】考查相似三角形的判定与性质,掌握相似三角形的判定定理是解题的关键.21、(1)见解析;(2).【分析】(1)画树状图列举出所有情况;

(2)让摸出的两个球号码之和等于4的情况数除以总情况数即为所求的概率.【详解】解:(1)根据题意,可以画出如下的树形图:从树形图可以看出,两次摸球出现的所有可能结果共有6种.(2)由树状图知摸出的两个小球号码之和等于4的有2种结果,∴摸出的两个小球号码之和等于4的概率为=.【点睛】本题要查列表法与树状图法求概率,列出树状图得出所有等可能结果是解题关键.22、(1)y=﹣20x+1600;(2)当每盒售价定为60元时,每天销售的利润P(元)最大,最大利润是8000元;(3)超市每天至少销售粽子440盒.【解析】试题分析:(1)根据“当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒”即可得出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)根据利润=1盒粽子所获得的利润×销售量列式整理,再根据二次函数的最值问题解答;(3)先由(2)中所求得的P与x的函数关系式,根据这种粽子的每盒售价不得高于58元,且每天销售粽子的利润不低于6000元,求出x的取值范围,再根据(1)中所求得的销售量y(盒)与每盒售价x(元)之间的函数关系式即可求解.试题解析:(1)由题意得,==;(2)P===,∵x≥45,a=﹣20<0,∴当x=60时,P最大值=8000元,即当每盒售价定为60元时,每天销售的利润P(元)最大,最大利润是8000元;(3)由题意,得=6000,解得,,∵抛物线P=的开口向下,∴当50≤x≤70时,每天销售粽子的利润不低于6000元的利润,又∵x≤58,∴50≤x≤58,∵在中,<0,∴y随x的增大而减小,∴当x=58时,y最小值=﹣20×58+1600=440,即超市每天至少销售粽子440盒.考点:二次函数的应用.23、(1)见解析;(2),证明见解析;(3)【分析】(1)连结OD,先由已知△ABD是等腰直角三角形,得DO⊥AB,再根据切线的性质得OD⊥PD,于是可得到DP∥AB;(2)由“一线三垂直模型”易得,进而可得.(3)利用勾股定理依次可求直径AB=10,,,得,再证明可得,,进而由求得PD即可.【详解】(1)证明:连结,如图,∵为的直径,∴,∵的平分线交于点,∴,∴,∴为等腰直角三角形,∴,∵为的切线,∴,∴;(2)答:,证明如下:∵是的直径,∴,∵,,∴,∴,∴,∵,∴,在和中,∴,∴,,∴,即.(3)解:在中,,∵为等腰直角三角形,∴∵,∴为等腰直角三角形,∴,在中,,∴,∵,,∴,∴,∴,,而,∴,∴.【点睛】本题考查了切线的性质:圆的切线垂直于过切点的半径.也考查了圆周角定理定理、等腰直角三角形的性质和三角形相似的判定与性质.解题关键是抓住45°角得等腰直角三角形进行解答.24、树状图见详解,【分析】画树状图展示所有9种等可能的结果数,找出两次摸出的小球所标数字之和为3的结果数,然后根据概率公式求解.【详解】解:画树状图为:共有9种等可能的结果数,其中两次摸出的小球所标数字之和为3的结果数为2,所以两次摸出的小球所标数字之和为3的概率=.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率25、54【解析】设定价为x元,利用销售量×每千克的利润=2240元列出方程求解即可.【详解】设定价为x元.根据题意可得,解之得:,∵销售量尽可能大∴x=54答:每千克特产应定价54元.【点睛】本题主要考查了一元二次方程的应用,关键是弄懂题意,找出题目中的等量关系,表示出销售量和每千克的利润,再列出方程.26、(1)抛物线的对称轴x=1,A(6,0);(1)△ACD的面积为11;(3)点P的坐标为(1,1)或(1,6)或(1,3).【分析】(1)令y=0,求出x,即可求出点A、B的坐标,令x=0,求出y即可求出点C的坐标,再根据对称轴公式即可求出抛物线的对称轴;(1)先将二次函数的一般式化成顶点式,即可求出点D的坐标,利用待定系数法求出直线AC的解析式,从而求出点F的坐标,根据“铅垂高,水平宽”求面积即可;(3)根据等腰三角

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论