版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省张家港市梁丰中学2025届九上数学期末达标检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.在△ABC与△DEF中,,,如果∠B=50°,那么∠E的度数是().A.50°; B.60°;C.70°; D.80°.2.如图,线段AB是⊙O的直径,弦,,则等于().A. B. C. D.3.如图所示,在⊙O中,=,∠A=30°,则∠B=()A.150° B.75° C.60° D.15°4.从1、2、3、4四个数中随机选取两个不同的数,分别记为,,则满足的概率为()A. B. C. D.5.如图,在正方形网格上,与△ABC相似的三角形是()A.△AFD B.△FED C.△AED D.不能确定6.如图,AB⊥BD,CD⊥BD,垂足分别为B、D,AC和BD相交于点E,EF⊥BD垂足为F.则下列结论错误的是()A.AEEC=BEED B.AE7.有一等腰三角形纸片ABC,AB=AC,裁剪方式及相关数据如图所示,则得到的甲、乙、丙、丁四张纸片中,面积最大的是()A.甲 B.乙 C.丙 D.丁8.在半径为的圆中,挖出一个半径为的圆面,剩下的圆环的面积为,则与的函数关系式为()A. B. C. D.9.一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是()A.4 B.5 C.6 D.810.某射击运动员在训练中射击了10次,成绩如图所示:下列结论不正确的是()A.众数是8 B.中位数是8 C.平均数是8.2 D.方差是1.211.已知关于x的方程x2+3x+a=0有一个根为﹣2,则另一个根为()A.5 B.﹣1 C.2 D.﹣512.如图,在Rt△ABC中,∠BAC=90º,AH是高,AM是中线,那么在结论①∠B=∠BAM,②∠B=∠MAH,③∠B=∠CAH中错误的个数有()A.0个 B.1个 C.2个 D.3个二、填空题(每题4分,共24分)13.已知实数x,y满足,则x+y的最大值为_______.14.分解因式:x3﹣16x=______.15.函数y=(m为常数)的图象上有三点(﹣1,y1)、、,则函数值y1、y2、y3的大小关系是_____.(用“<”符号连接)16.将直角边长为5cm的等腰直角△ABC绕点A逆时针旋转15°后,得到△AB′C′,则图中阴影部分的面积是_____cm1.17.计算:=______.18.将一枚标有数字1、2、3、4、5、6的均匀正方体骰子抛掷一次,则向上一面数字为奇数的概率等于_____.三、解答题(共78分)19.(8分)如图,已知在平面直角坐标系xOy中,直线y=x+与x轴交于点A,与y轴交于点B,点F是点B关于x轴的对称点,抛物线y=x2+bx+c经过点A和点F,与直线AB交于点C.(1)求b和c的值;(2)点P是直线AC下方的抛物线上的一动点,连结PA,PB.求△PAB的最大面积及点P到直线AC的最大距离;(3)点Q是抛物线上一点,点D在坐标轴上,在(2)的条件下,是否存在以A,P,D,Q为顶点且AP为边的平行四边形,若存在,直接写出点Q的坐标;若不存在,说明理由.20.(8分)如图,已知AB是⊙O的直径,点C在⊙O上,点P是AB延长线上一点,∠BCP=∠A.(1)求证:直线PC是⊙O的切线;(2)若CA=CP,⊙O的半径为2,求CP的长.21.(8分)在初中阶段的函数学习中,我们经历了“确定函数的表达式一一利用函数图象研究其性质一一运用函数解决问题”的学习过程.在画函数图象时,我们通过描点或平移的方法画出了所学的函数图象.同时,我们也学习了绝对值的意义结合上面经历的学习过程,现在来解决下面的问题:在函数中,当时,.(1)求这个函数的表达式;(2)在给出的平面直角坐标系中,请用你喜欢的方法画出这个函数的图象并写出这个函数的一条性质;(3)已如函数的图象如图所示,结合你所画的函数图象,直接写出不等式的解集.22.(10分)如图,在平面直角坐标系中,二次函数交轴于点、,交轴于点,在轴上有一点,连接.(1)求二次函数的表达式;(2)若点为抛物线在轴负半轴上方的一个动点,求面积的最大值;(3)抛物线对称轴上是否存在点,使为等腰三角形,若存在,请直接写出所有点的坐标,若不存在请说明理由.23.(10分)已知关于的一元二次方程有两个不相等的实数根,.(1)求的最小整数值;(2)当时,求的值.24.(10分)解方程:(1)x2﹣4x+2=0;(2)25.(12分)已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O.(1)如图(1),连接AF、CE.①四边形AFCE是什么特殊四边形?说明理由;②求AF的长;(2)如图(2),动点P、Q分别从A、C两点同时出发,沿△AFB和△CDE各边匀速运动一周.即点P自A→F→B→A停止,点Q自C→D→E→C停止.在运动过程中,已知点P的速度为每秒5cm,点Q的速度为每秒4cm,运动时间为t秒,当A、C、P、Q四点为顶点的四边形是平行四边形时,求t的值.26.如图,在下列(边长为1)的网格中,已知的三个顶点,,在格点上,请分别按不同要求在网格中描出一个点,并写出点的坐标.(1)经过,,三点有一条抛物线,请在图1中描出点,使点落在格点上,同时也落在这条抛物线上;则点的坐标为______;(2)经过,,三点有一个圆,请用无刻度的直尺在图2中画出圆心;则点的坐标为______.
参考答案一、选择题(每题4分,共48分)1、C【分析】根据已知可以确定;根据对应角相等的性质即可求得的大小,即可解题.【详解】解:∵,,∴与是对应角,与是对应角,故.故选:C.【点睛】本题考查了相似三角形的判定及性质,本题中得出和是对应角是解题的关键.2、C【分析】先根据垂径定理得到,再根据圆周角定理得∠BOD=2∠CAB=40°,然后利用邻补角的定义计算∠AOD的度数.【详解】∵CD⊥AB,∴,∴∠BOD=2∠CAB=2×20°=40°,∴∠AOD=180°-∠BOD=180°-40°=140°.故答案为C.【点睛】本题考查圆中的角度计算,熟练掌握垂径定理和圆周角定理是关键.3、B【详解】∵在⊙O中,=,∴AB=AC,∴△ABC是等腰三角形,∴∠B=∠C;又∠A=30°,∴∠B==75°(三角形内角和定理).故选B.考点:圆心角、弧、弦的关系.4、C【分析】根据题意列出树状图,得到所有a、c的组合再找到满足的数对即可.【详解】如图:符合的共有6种情况,而a、c的组合共有12种,故这两人有“心灵感应”的概率为.故选:C.【点睛】此题考查了利用树状图法求概率,要做到勿漏、勿多,同时要适时利用概率公式解答.5、A【分析】根据题意直接利用三角形三边长度,得出其比值,进而分析即可求出相似三角形.【详解】解:∵AF=4,DF=4,AD=4,AB=2,BC=2,AC=2,∴,∴△AFD∽△ABC.故选:A.【点睛】本题主要考查相似三角形的判定以及勾股定理,由勾股定理得出三角形各边长是解题的关键.6、A【解析】利用平行线的性质以及相似三角形的性质一一判断即可.【详解】解:∵AB⊥BD,CD⊥BD,EF⊥BD,∴AB∥CD∥EF∴△ABE∽△DCE,∴AEED=AB∵EF∥AB,∴EFAB∴ADDB=AEBF,故选项故选:A.【点睛】考查平行线的性质,相似三角形的判定和性质,平行线分线段成比例定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.7、D【分析】根据相似三角形的性质求得甲的面积和丙的面积,进一步求得乙和丁的面积,比较即可求得.【详解】解:如图:∵AD⊥BC,AB=AC,∴BD=CD=5+2=7,∵AD=2+1=3,∴S△ABD=S△ACD==∵EF∥AD,∴△EBF∽△ABD,∴=()2=,∴S甲=,∴S乙=,同理=()2=,∴S丙=,∴S丁=﹣=,∵,∴面积最大的是丁,故选:D.【点睛】本题考查了三角形相似的判定和性质,相似三角形面积的比等于相似比的平方.解题的关键是熟练掌握相似三角形的判定和性质进行解题.8、D【分析】根据圆环的面积=大圆的面积-小圆的面积,即可得出结论.【详解】解:根据题意:y=故选D.【点睛】此题考查的是圆环的面积公式,掌握圆环的面积=大圆的面积-小圆的面积是解决此题的关键.9、C【分析】根据垂径定理得出BC=AB,再根据勾股定理求出OC的长:【详解】∵OC⊥AB,AB=16,∴BC=AB=1.在Rt△BOC中,OB=10,BC=1,∴.故选C.10、D【分析】首先根据图形数出各环数出现的次数,在进行计算众数、中位数、平均数、方差.【详解】根据图表可得10环的2次,9环的2次,8环的3次,7环的2次,6环的1次.所以可得众数是8,中位数是8,平均数是方差是故选D【点睛】本题主要考查统计的基本知识,关键在于众数、中位数、平均数和方差的概念.特别是方差的公式.11、B【分析】根据关于x的方程x2+3x+a=0有一个根为-2,可以设出另一个根,然后根据根与系数的关系可以求得另一个根的值,本题得以解决.【详解】∵关于x的方程x2+3x+a=0有一个根为-2,设另一个根为m,
∴-2+m=−,
解得,m=-1,
故选B.12、B【分析】根据直角三角形斜边上的中线性质和等腰三角形的性质得出∠B=∠BAM,根据已知条件判断∠B=∠MAH不一定成立;根据三角形的内角和定理及余角的性质得出∠B=∠CAH.【详解】①∵在Rt△ABC中,∠BAC=90°,AH是高,AM是中线,∴AM=BM,∴∠B=∠BAM,①正确;②∵∠B=∠BAM,不能判定AM平分∠BAH,∴∠B=∠MAH不一定成立,②错误;③∵∠BAC=90°,AH是高,∴∠B+∠BAH=90°,∠CAH+∠BAH=90°,∴∠B=∠CAH,③正确.故选:B.【点睛】本题主要考查对直角三角形斜边上的中线性质,三角形的内角和定理,等腰三角形的性质等知识点的理解和掌握,能根据这些性质进行推理是解此题的关键.二、填空题(每题4分,共24分)13、4【解析】用含x的代数式表示y,计算x+y并进行配方即可.【详解】∵∴∴∴当x=-1时,x+y有最大值为4故答案为4【点睛】本题考查的是求代数式的最大值,解题的关键是配方法的应用.14、x(x+4)(x–4).【解析】先提取x,再把x2和16=42分别写成完全平方的形式,再利用平方差公式进行因式分解即可.解:原式=x(x2﹣16)=x(x+4)(x﹣4),故答案为x(x+4)(x﹣4).15、y2<y1<y1【分析】根据反比例函数的比例系数的符号可得反比例函数所在象限为一、三,其中在第三象限的点的纵坐标总小于在第一象限的纵坐标,进而判断在同一象限内的点(﹣1,y1)和(,y2)的纵坐标的大小即可.【详解】解:∵反比例函数的比例系数为m2+1>0,∴图象的两个分支在一、三象限;∵第三象限的点的纵坐标总小于在第一象限的纵坐标,点(﹣1,y1)和(,y2)在第三象限,点(,y1)在第一象限,∴y1最小,∵﹣1<,y随x的增大而减小,∴y1>y2,∴y2<y1<y1.故答案为y2<y1<y1.【点睛】考查反比例函数图象上点的坐标特征;用到的知识点为:反比例函数的比例系数小于0,图象的2个分支在一、三象限;第三象限的点的纵坐标总小于在第一象限的纵坐标;在同一象限内,y随x的增大而减小.16、【解析】∵等腰直角△ABC绕点A逆时针旋转15°后得到△AB′C′,∵∠CAC′=15°,∴∠C′AB=∠CAB﹣∠CAC′=45°﹣15°=30°,AC′=AC=5,∴阴影部分的面积=×5×tan30°×5=.17、-1.【分析】由题意根据负整数指数幂和零指数幂的定义求解即可.【详解】解:=1﹣2=﹣1.故答案为:﹣1.【点睛】本题考查负整数指数幂和零指数幂的定义,熟练掌握实数的运算法则以及负整数指数幂和零指数幂的运算方法是解题的关键.18、.【分析】根据概率公式计算概率即可.【详解】∵在正方体骰子中,朝上的数字共有6种,为奇数的情况有3种,分别是:1,3,5,∴朝上的数字为奇数的概率是=;故答案为:.【点睛】此题考查的是求概率问题,掌握概率公式是解决此题的关键.三、解答题(共78分)19、(1)b=,c=﹣;(2),;(3)点Q的坐标为:(﹣1﹣,)或(,﹣)或(﹣1+,)或(,)或(﹣,﹣).【分析】(1)直线与轴交于点,与轴交于点,则点、的坐标分别为:、,则点,抛物线经过点和点,则,将点的坐标代入抛物线表达式并解得:;(2)过点作轴的平行线交于点,设出点P,H的坐标,将△PAB的面积表示成△APH和△BPH的面积之和,可得函数表达式,可求△PAB的面积最大值,此时设点P到AB的距离为d,当△PAB的面积最大值时d最大,利用面积公式求出d.(3)若存在以,,,为顶点且为边的平行四边形时,平移AP,得出所有可能的情形,利用平行四边形的对称性得到坐标的关系,即可求解.【详解】解:(1)直线与轴交于点,与轴交于点,令x=0,则y=,令y=0,则x=-3,则点、的坐标分别为:、,∵点F是点B关于x轴的对称点,∴点,∵抛物线经过点和点,则,将点代入抛物线表达式得:,解得:,故抛物线的表达式为:,,;(2)过点作轴的平行线交于点,设点,则点,则的面积:当时,,且,∴的最大值为,此时点,,设:到直线的最大距离为,,解得:;(3)存在,理由:点,点,,设点,,①当点在轴上时,若存在以,,,为顶点且为边的平行四边形时,如图,三种情形都可以构成平行四边形,由于平行四边形的对称性可得图中点Q到x轴的距离和点P到x轴的距离相等,∴,即,解得:(舍去)或或;②当点在轴上时,如图:当点Q在y轴右侧时,由平行四边形的性质可得:=3,∴∴m=,代入二次函数表达式得:y=当点Q在y轴左侧时,由平行四边形的性质可得:=,∴,∴,代入二次函数表达式得:y=故点,或,;故点的坐标为:,或,或,或,或,.【点睛】本题考查的是二次函数综合运用,涉及到一次函数、平行四边形性质、图形的面积计算等,其中(3),要注意分类求解,避免遗漏.20、(1)见解析;(2)2【分析】(1)欲证明PC是⊙O的切线,只要证明OC⊥PC即可;(2)想办法证明∠P=30°即可解决问题.【详解】(1)∵OA=OC,∴∠A=∠ACO,∵∠PCB=∠A,∴∠ACO=∠PCB,∵AB是⊙O的直径,∴∠ACO+∠OCB=90°,∴∠PCB+∠OCB=90°,即OC⊥CP,∵OC是⊙O的半径,∴PC是⊙O的切线;(2)∵CP=CA,∴∠P=∠A,∴∠COB=2∠A=2∠P,∵∠OCP=90°,∴∠P=30°,∵OC=OA=2,∴OP=2OC=4,∴PC==2.【点睛】本题考查了切线的判定,解直角三角形,圆周角定理,正确的识别图形是解题的关键.21、(1);(2)函数图象见解析,性质:函数图象关于y轴对称(答案不唯一);(3)不等式的解集为或【分析】(1)根据待定系数法进行求解函数的表达式;(2)结合(1),将函数的表达式写成分段形式,然后进行画图,进而求解;(3)结合(2)中的函数图象直接写出不等式的解集.【详解】解:(1)∵当时,,,∴,∴;(2)由(1)知,,∴该函数的图象如图所示:性质:函数图象关于y轴对称(答案不唯一);(3)由函数图象可知,写出不等式的解集为或.【点睛】本题考查待定系数法求函数的表达式,反比例函数的图象与性质,一元一次不等式与一次函数的关系,学会画函数的图象与运用数形结合的思想是解题的关键.22、(1)二次函数的解析式为;(2)当时,的面积取得最大值;(3)点的坐标为,,.【解析】分析:(1)把已知点坐标代入函数解析式,得出方程组求解即可;(2)根据函数解析式设出点D坐标,过点D作DG⊥x轴,交AE于点F,表示△ADE的面积,运用二次函数分析最值即可;(3)设出点P坐标,分PA=PE,PA=AE,PE=AE三种情况讨论分析即可.详解:(1)∵二次函数y=ax2+bx+c经过点A(﹣4,0)、B(2,0),C(0,6),∴,解得:,所以二次函数的解析式为:y=;(2)由A(﹣4,0),E(0,﹣2),可求AE所在直线解析式为y=,过点D作DN⊥x轴,交AE于点F,交x轴于点G,过点E作EH⊥DF,垂足为H,如图,设D(m,),则点F(m,),∴DF=﹣()=,∴S△ADE=S△ADF+S△EDF=×DF×AG+DF×EH=×DF×AG+×DF×EH=×4×DF=2×()=,∴当m=时,△ADE的面积取得最大值为.(3)y=的对称轴为x=﹣1,设P(﹣1,n),又E(0,﹣2),A(﹣4,0),可求PA=,PE=,AE=,分三种情况讨论:当PA=PE时,=,解得:n=1,此时P(﹣1,1);当PA=AE时,=,解得:n=,此时点P坐标为(﹣1,);当PE=AE时,=,解得:n=﹣2,此时点P坐标为:(﹣1,﹣2).综上所述:P点的坐标为:(﹣1,1),(﹣1,),(﹣1,﹣2).点睛:本题主要考查二次函数的综合问题,会求抛物线解析式,会运用二次函数分析三角形面积的最大值,会分类讨论解决等腰三角形的顶点的存在问题时解决此题的关键.23、(1)1;(2)【分析】(1)若一元二次方程有两不等实数根,则根的判别式△=b2-4ac>0,建立关于a的不等式,求出a的取值范围,进而得出a的最小整数值;(2)利用根与系数的关系得出x1+x2和x1x2,进而得出关于a的一元二次方程求出即可.【详解】(1)∵原方程有两个不相等的实数根,,,,∴,且,∴,故的最小整数值为1;(2)由题意:,∵,∴,∴,∴,整理,得:,解之,得:,满足,故的值为:.【点睛】本题考查了一元二次方程根的判别式以及根与系数的关系.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.24、(1);(1)x1=﹣3,x1=1.【分析】(1)用配方法即可得出结论;(1)整理后用因式分解法即可得到结论.【详解】(1)∵x1﹣4x+1=0,∴x1﹣4x+4=1,∴(x﹣1)1=1,∴;(1)∵(x﹣1)(x+1)=4,∴x1+x﹣6=0,∴(x+3)(x﹣1)=0,∴x1=﹣3,x1=1.【点睛】本题考查了一元二次方程,解答本题的关键是熟练运用一元二次方程的解法,本题属于基础题型.25、(1)①菱形,理由见解析;②AF=1;(2)秒.【分析】(1)①先证明四边形ABCD为平行四边
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度房产居间协议模板
- 2024工商局股权转让化协议
- 2024年度建筑施工作业框架性协议
- 2024年道路照明系统维修与保养协议
- 齐鲁工业大学《Python程序设计》2023-2024学年期末试卷
- 齐鲁工业大学《JavaWeb应用开发》2021-2022学年期末试卷
- 齐鲁工业大学《操作系统安全》2023-2024学年期末试卷
- 健康管理服务合同的公告
- 创业空间的社交电子商务考核试卷
- 农业科学中的生态农业研究考核试卷
- 雨水泵站及配套工程施工组织设计样本
- T-ZJFS 010-2024 银行业金融机构转型贷款实施规范
- 六年级数学课件-圆的面积【全国一等奖】
- 食管炎的护理查房
- 《教育的初心》读书分享
- 软件工程生涯发展展示
- 基于PLC的热水箱恒温控制系统
- 医疗机构校验管理课件
- 药物临床试验突发事件应急预案
- 《继电保护培训》课件
- 医院装饰工程服务方案
评论
0/150
提交评论