




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.近视眼镜的度数y(度)与镜片焦距x(m)成反比例,已知200度近视眼镜镜片的焦距为0.5m,则y与x的函数关系式为()A.y=100x B.y=C.y=200x D.y=2.如图,三个边长均为的正方形重叠在一起,、是其中两个正方形对角线的交点,则两个阴影部分面积之和是()A. B. C. D.3.如图,一块含角的直角三角板绕点按顺时针方向,从处旋转到的位置,当点、点、点在一条直线上时,这块三角板的旋转角度为()A. B. C. D.4.以半径为2的圆内接正三角形、正方形、正六边形的边心距为三边作三角形,则()A.不能构成三角形 B.这个三角形是等腰三角形C.这个三角形是直角三角形 D.这个三角形是钝角三角形5.已知点都在反比例函数为常数,且)的图象上,则与的大小关系是()A. B.C. D.6.某闭合电路中,电源的电压为定值,电流I(A)与电阻R(Ω)成反比例.图表示的是该电路中电流I与电阻R之间函数关系的图象,则用电阻R表示电流I的函数解析式为()A. B. C. D.7.在中,,若已知,则()A. B. C. D.8.小明、小亮、小梅、小花四人共同探究函数的值的情况,他们作了如下分工:小明负责找函数值为1时的值,小亮负责找函数值为0时的值,小梅负责找最小值,小花负责找最大值.几分钟后,各自通报探究的结论,其中错误的是()A.小明认为只有当时,函数值为1;B.小亮认为找不到实数,使函数值为0;C.小花发现当取大于2的实数时,函数值随的增大而增大,因此认为没有最大值;D.小梅发现函数值随的变化而变化,因此认为没有最小值9.已知点P是线段AB的黄金分割点(AP>PB),AB=4,那么AP的长是()A. B. C. D.10.已知点,如果把点绕坐标原点顺时针旋转后得到点,那么点的坐标为()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,在△ABC中,∠ABC=90°,AB=6,BC=4,P是△ABC的重心,连结BP,CP,则△BPC的面积为_____.12.如图,直线l1∥l2∥l3,A、B、C分别为直线l1,l2,l3上的动点,连接AB,BC,AC,线段AC交直线l2于点D.设直线l1,l2之间的距离为m,直线l2,l3之间的距离为n,若∠ABC=90°,BD=3,且,则m+n的最大值为___________.13.△ABC中,∠A、∠B都是锐角,若sinA=,cosB=,则∠C=_____.14.如图,是某公园一圆形喷水池,在池中心竖直安装一根水管OA=1.25m,A处是喷头,水流在各个方向沿形状相同的抛物线落下,水落地后形成一个圆,圆心为O,直径为线段CB.建立如图所示的平面直角坐标系,若水流路线达到最高处时,到x轴的距离为2.25m,到y轴的距离为1m,则水落地后形成的圆的直径CB=_____m.15.计算:(π﹣3)0+(﹣)﹣2﹣(﹣1)2=_____.16.已知三点A(0,0),B(5,12),C(14,0),则△ABC内心的坐标为____.17.如图,AB、AC都是圆O的弦,OM⊥AB,ON⊥AC,垂足分别为M、N,如果MN=,那么BC=____________.18.双曲线、在第一象限的图像如图,,过上的任意一点,作轴的平行线交于,交轴于,若,则的解析式是_____________.三、解答题(共66分)19.(10分)为了丰富校园文化生活,提高学生的综合素质,促进中学生全面发展,学校开展了多种社团活动.小明喜欢的社团有:合唱社团、足球社团、书法社团、科技社团(分别用字母A,B,C,D依次表示这四个社团),并把这四个字母分别写在四张完全相同的不透明的卡片的正面上,然后将这四张卡片背面朝上洗匀后放在桌面上.(1)小明从中随机抽取一张卡片是足球社团B的概率是.(2)小明先从中随机抽取一张卡片,记录下卡片上的字母后不放回,再从剩余的卡片中随机抽取一张卡片,记录下卡片上的字母.请你用列表法或画树状图法求出小明两次抽取的卡片中有一张是科技社团D的概率.20.(6分)用配方法把二次函数y=﹣2x2+6x+4化为y=a(x+m)2+k的形式,再指出该函数图象的开口方向、对称轴和顶点坐标.21.(6分)已知x2+xy+y=12,y2+xy+x=18,求代数式3x2+3y2﹣2xy+x+y的值.22.(8分)如图,已知A(-4,2)、B(n,-4)是一次函数的图象与反比例函数的图象的两个交点.(1)求此反比例函数和一次函数的解析式;(2)求△AOB的面积;23.(8分)如图,在中,,是边上的中线,过点作,垂足为,交于点,.(1)求的值:(2)若,求的长.24.(8分)在平面直角坐标系中(如图),已知抛物线经过点,与轴交于点,,抛物线的顶点为点,对称轴与轴交于点.(1)求抛物线的表达式及点的坐标;(2)点是轴正半轴上的一点,如果,求点的坐标;(3)在(2)的条件下,点是位于轴左侧抛物线上的一点,如果是以为直角边的直角三角形,求点的坐标.25.(10分)如图,在矩形的边上取一点,连接并延长和的延长线交于点,过点作的垂线与的延长线交于点,与交于点,连接.(1)当且时,求的长;(2)求证:;(3)连接,求证:.26.(10分)如图,在平面直角坐标系中,点是轴正半轴上的一动点,抛物线(是常数,且过点,与轴交于两点,点在点左侧,连接,以为边做等边三角形,点与点在直线两侧.(1)求B、C的坐标;(2)当轴时,求抛物线的函数表达式;(3)①求动点所成的图像的函数表达式;②连接,求的最小值.
参考答案一、选择题(每小题3分,共30分)1、A【解析】由于近视镜度数y(度)与镜片焦距x(米)之间成反比例关系可设y=kx,由200度近视镜的镜片焦距是0.5米先求得k【详解】由题意,设y=kx由于点(0.5,200)适合这个函数解析式,则k=0.5×200=100,∴y=100x故眼镜度数y与镜片焦距x之间的函数关系式为y=100x故选:A.【点睛】本题考查根据实际问题列反比例函数关系式,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.2、A【分析】连接AN,CN,通过将每部分阴影的面积都转化为正方形ACFE的面积的,则答案可求.【详解】如图,连接AN,CN∵四边形ACFE是正方形∴∵,∴∴∴所以四边形BCDN的面积为正方形ACFE的面积的同理可得另一部分阴影的面积也是正方形ACFE的面积的∴两部分阴影部分的面积之和为正方形ACFE的面积的即故选A【点睛】本题主要考查不规则图形的面积,能够利用全等三角形对面积进行转化是解题的关键.3、C【分析】直接利用旋转的性质得出对应边,再根据三角板的内角的度数得出答案.【详解】解:∵将一块含30°角的直角三角板ABC绕点C顺时针旋转到△A'B'C,
∴BC与B'C是对应边,
∴旋转角∠BCB'=180°-30°=150°.
故选:C.【点睛】此题主要考查了旋转的性质,对应点与旋转中心所连线段的夹角等于旋转角,正确得出对应边是解题关键.4、C【分析】由于内接正三角形、正方形、正六边形是特殊内角的多边形,可构造直角三角形分别求出边心距的长,由勾股定理逆定理可得该三角形是直角三角形,问题得解.【详解】解:如图1,∵OC=2,∴OD=2×sin30°=1;如图2,∵OB=2,∴OE=2×sin45°=;如图3,∵OA=2,∴OD=2×cos30°=,则该三角形的三边分别为:1,,,∵12+()2=()2,∴该三角形是直角三角形,故选:C.【点睛】本题主要考查多边形与圆,解答此题要明确:多边形的半径、边心距、中心角等概念,根据解直角三角形的知识解答是解题的关键.5、B【分析】由m2>0可得-m2<0,根据反比例函数的性质可得的图象在二、四象限,在各象限内,y随x的增大而增大,根据各点所在象限及反比例函数的增减性即可得答案.【详解】∵m为常数,,∴m2>0,∴-m2<0,∴反比例函数的图象在二、四象限,在各象限内,y随x的增大而增大,∵-2<-1<0,1>0,∴0<y1<y2,y3<0,∴y3<y1<y2,故选:B.【点睛】本题考查反比例函数的性质,对于反比例函数y=(k≠0),当k>0时,函数图象在一、三象限,在各象限,y随x的增大而减小;当k<0时,函数图象在二、四象限,在各象限,y随x的增大而增大;熟练掌握反比例函数的性质是解题关键.6、C【解析】设,那么点(3,2)满足这个函数解析式,∴k=3×2=1.∴.故选C7、B【分析】根据题意利用三角函数的定义,定义成三角形的边的比值,进行分析计算即可求解.【详解】解:在中,,∵,设BC=3x,则AC=4x,根据勾股定理可得:,∴.故选:B.【点睛】本题主要考查三角函数的定义,注意掌握求锐角的三角函数值的方法:利用锐角三角函数的定义,通过设参数的方法求三角函数值,或者利用同角(或余角)的三角函数关系式求三角函数值.8、D【分析】根据二次函数的最值及图象上点的坐标特点回答即可.【详解】因为该抛物线的顶点是,所以正确;根据二次函数的顶点坐标,知它的最小值是1,所以正确;根据图象,知对称轴的右侧,即时,y随x的增大而增大,所以正确;因为二次项系数1>0,有最小值,所以错误;故选:D.【点睛】本题主要考查了二次函数图象与最值问题,准确分析是解题的关键.9、A【解析】根据黄金比的定义得:,得.故选A.10、B【分析】连接OP,OP1,过P作PN⊥y轴于N,过P1作P1M⊥y轴于M,根据旋转的性质,证明,再根据所在的象限,即可确定点的坐标.【详解】如图连接OP,OP1,过P作PN⊥y轴于N,过P1作P1M⊥y轴于M∵点绕坐标原点顺时针旋转后得到点∴∴∴,∴∵∴∵∴∵在第四象限∴点的坐标为故答案为:B.【点睛】本题考查了坐标轴的旋转问题,掌握旋转的性质是解题的关键.二、填空题(每小题3分,共24分)11、1【分析】△ABC的面积S=AB×BC==12,延长BP交AC于点E,则E是AC的中点,且BP=BE,即可求解.【详解】解:△ABC的面积S=AB×BC==12,延长BP交AC于点E,则E是AC的中点,且BP=BE,(证明见备注)△BEC的面积=S=6,BP=BE,则△BPC的面积=△BEC的面积=1,故答案为:1.备注:重心到顶点的距离与重心到对边中点的距离之比为2:1,例:已知:△ABC,E、F是AB,AC的中点.EC、FB交于G.求证:EG=CG证明:过E作EH∥BF交AC于H.∵AE=BE,EH∥BF,∴AH=HF=AF,又∵AF=CF,∴HF=CF,∴HF:CF=,∵EH∥BF,∴EG:CG=HF:CF=,∴EG=CG.【点睛】此题考查了重心的概念和性质:三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍.12、【分析】过作于,延长交于,过作于,过作于,设,,得到,,根据相似三角形的性质得到,,由,得到,于是得到,然后根据二次函数的性质即可得到结论.【详解】解:过作于,延长交于,过作于,过作于,设,,,,,,,,,,即,,,,,即,,,,,当最大时,,,当时,,,的最大值为.故答案为:.【点睛】本题考查了平行线的性质,相似三角形的判定和性质,二次函数的性质,正确的作出辅助线,利用相似三角形转化线段关系,得出关于m的函数解析式是解题的关键.13、60°.【分析】先根据特殊角的三角函数值求出∠A、∠B的度数,再根据三角形内角和定理求出∠C即可作出判断.【详解】∵△ABC中,∠A、∠B都是锐角,sinA=,cosB=,∴∠A=∠B=60°.∴∠C=180°﹣∠A﹣∠B=180°﹣60°﹣60°=60°.故答案为:60°.【点睛】本题考查的是特殊角的三角函数值及三角形内角和定理,比较简单.14、1【分析】设y轴右侧的抛物线解析式为:y=a(x−1)2+2.21,将A(0,1.21)代入,求得a,从而可得抛物线的解析式,再令函数值为0,解方程可得点B坐标,从而可得CB的长.【详解】解:设y轴右侧的抛物线解析式为:y=a(x﹣1)2+2.21∵点A(0,1.21)在抛物线上∴1.21=a(0﹣1)2+2.21解得:a=﹣1∴抛物线的解析式为:y=﹣(x﹣1)2+2.21令y=0得:0=﹣(x﹣1)2+2.21解得:x=2.1或x=﹣0.1(舍去)∴点B坐标为(﹣2.1,0)∴OB=OC=2.1∴CB=1故答案为:1.【点睛】本题考查了二次函数在实际问题中的应用,明确二次函数的相关性质及正确的解方程,是解题的关键.15、1【分析】直接利用零指数幂的性质以及负整数指数幂的性质分别化简,得出答案.【详解】原式=1+1﹣1=1.故答案为:1.【点睛】本题主要考查零指数幂的性质以及负整数指数幂的性质,牢记负整数指数幂的计算方法,是解题的关键.16、(6,4).【分析】作BQ⊥AC于点Q,由题意可得BQ=12,根据勾股定理分别求出BC、AB的长,继而利用三角形面积,可得△OAB内切圆半径,过点P作PD⊥AC于D,PF⊥AB于F,PE⊥BC于E,设AD=AF=x,则CD=CE=14-x,BF=13-x,BE=BC-CE=15-(14-x)=1+x,由BF=BE可得13-x=1+x,解之求出x的值,从而得出点P的坐标,即可得出答案.【详解】解:如图,过点B作BQ⊥AC于点Q,则AQ=5,BQ=12,∴AB=,CQ=AC-AQ=9,∴BC=设⊙P的半径为r,根据三角形的面积可得:r=过点P作PD⊥AC于D,PF⊥AB于F,PE⊥BC于E,设AD=AF=x,则CD=CE=14-x,BF=13-x,∴BE=BC-CE=15-(14-x)=1+x,由BF=BE可得13-x=1+x,解得:x=6,∴点P的坐标为(6,4),故答案为:(6,4).【点睛】本题主要考查勾股定理、三角形的内切圆半径公式及切线长定理,根据三角形的内切圆半径公式及切线长定理求出点P的坐标是解题的关键.17、2【分析】根据垂径定理得出AN=CN,AM=BM,根据三角形的中位线性质得出BC=2MN,即可得出答案.【详解】解:∵OM⊥AB,ON⊥AC,OM过O,ON过O,
∴AN=CN,AM=BM,
∴BC=2MN,
∵MN=,∴BC=2,故答案为:2.【点睛】本题考查了垂径定理和三角形的中位线性质,能熟记知识点的内容是解此题的关键,注意:垂直于弦的直径平分弦.18、【分析】根据y1=,过y1上的任意一点A,得出△CAO的面积为2,进而得出△CBO面积为3,即可得出y2的解析式.【详解】解:∵y1=,过y1上的任意一点A,作x轴的平行线交y2于B,交y轴于C,∴S△AOC=×4=2,∵S△AOB=1,∴△CBO面积为3,∴k=xy=6,∴y2的解析式是:y2=.故答案为y2=.三、解答题(共66分)19、(1);(2)见解析,.【分析】(1)直接根据概率公式求解;(2)利用列表法展示所有12种等可能性结果,再找出小明两次抽取的卡片中有一张是科技社团D的结果数,然后根据概率公式求解.【详解】(1)小明从中随机抽取一张卡片是足球社团B的概率=;(2)列表如下:ABCDA(B,A)(C,A)(D,A)B(A,B)(C,B)(D,B)C(A,C)(B,C)(D,C)D(A,D)(B,D)(C,D)由表可知共有12种等可能结果,小明两次抽取的卡片中有一张是科技社团D的结果数为6种,所以小明两次抽取的卡片中有一张是科技社团D的概率为.【点睛】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率20、开口向下,对称轴为直线,顶点【解析】试题分析:先通过配方法对二次函数的一般式进行配方成顶点式,再根据二次函数图象性质写出开口方向,对称轴,顶点坐标.试题解析:,=,=,开口向下,对称轴为直线,顶点.21、或【分析】分别将已知的两个等式相加和相减,得到(x+y)2+(x+y)=30,(x+y-1)(x﹣y)=﹣6,即可求得x、y的值,再求代数式的值即可.【详解】解:由x2+xy+y=12①,y2+xy+x=18②,①+②,得(x+y)2+(x+y)=30③,①﹣②,得(x+y-1)(x﹣y)=﹣6④,由③得(x+y+6)(x+y﹣5)=0,∴x+y=﹣6或x+y=5⑤,∴将⑤分别代入④得,x﹣y=或x﹣y=﹣,∴或当时,当时,
故答案为:或【点睛】本题考查解二元一次方程组;理解题意,将已知式子进行合理的变形,再求二元一次方程组的解是解题的关键.22、(1)y=-;y=-x-2;(2)6【分析】(1)先把点A(-4,2)代入,求得“m”的值得到反比例函数的解析式,再把点B(n,-4)代入所得的反比例函数的解析式中求得“n”的值,从而可得点B的坐标,最后把A、B的坐标代入中列方程组解得“k、b”的值即可得到一次函数的解析式;(2)设直线AB和x轴交于点C,先求出点C的坐标,再由S△AOB=S△AOC+S△BOC,即可计算出△AOB的面积;【详解】(1)把点A(-4,2)代入得:,解得:,∴反比例函数的解析式为:.把点B(n,-4)代入得:,解得:,∴点B的坐标为(2,-4).把点A、B的坐标代入得:,解得,∴一次函数的解析式是;(2)如图,设AB与x轴的交点为点C,在中由可得:,解得:.∴点C的坐标是(-2,0).∴OC=2,∴S△AOB=S△AOC+S△BOC=.23、(1);(2)4【分析】(1)根据∠ACB=90°,CD是斜边AB上的中线,可得出CD=BD,则∠B=∠BCD,再由AE⊥CD,可证明∠B=∠CAM,由AM=2CM,可得出CM:AC=1:,即可得出sinB的值;(2)根据sinB的值,可得出AC:AB=1:,再由AB=,得AC=2,根据勾股定理即可得出结论.【详解】(1)∵,是斜边的中线,∴,∴,∵,∴.∵,∴.∴.在中,∵,∴.∴.(2)∵,∴.由(1)知,∴.∴.【点睛】本题主要考查了勾股定理和锐角三角比,熟练掌握根据锐角三角比解直角三角形是解题的关键.24、(1),;(2);(3)或【分析】(1)将点A、B代入抛物线,即可求出抛物线解析式,再化为顶点式即可;
(2)如图1,连接AB,交对称轴于点N,则N(-,-2),利用相等角的正切值相等即可求出EH的长,OE的长,可写出点E的坐标;
(3)分∠EAP=90°和∠AEP=90°两种情况讨论,通过相似的性质,用含t的代数式表示出点P的坐标,可分别求出点P的坐标.【详解】解:(1)(1)将点A(-3,-2)、B(0,-2)代入抛物线,
得,,
解得,a=,c=-2,
∴y=x2+4x-2
=(x+)2-5,
∴抛物线解析式为y=x2+4x-2,顶点C的坐标为(-,-5);(2)如图1,连接AB,交对称轴于点N,则N(-,-2),,则,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 保洁公司 员工 合同标准文本
- 中介地皮厂房合同标准文本
- 2025年跨境电商物流空运合同
- 五座汽车租赁合同样本
- 公司向政府借款合同样本
- 体育馆维修合同标准文本
- 农村改建建筑合同样本
- 修路合伙合同样本
- 乙方广告销售合同样本
- bot水务合同样本
- 网络安全应急处置工作预案
- 住宅物业消防安全管理 XF1283-2015知识培训
- 军事理论课件教学
- 《电网生产技改大修项目全过程管理典型案例》笔记
- 七年级下册数学课件:平行线中的拐点问题
- CJT 206-2005 城市供水水质标准
- 氧气吸入操作评分标准(中心供氧)
- 入股到别人私人名下协议书
- UG NX12.0基础与应用教程 课件全套 单元1-8 UG NX 12.0 软件的基础知识 - 工程图操作基础
- 2023版29490-2023企业知识产权合规管理体系管理手册
- 2023-2024学年广东省广州市天河区八年级(下)期中数学试卷(含解析)
评论
0/150
提交评论