版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.如图是一根空心方管,则它的主视图是()A. B. C. D.2.如图,线段AB两个端点的坐标分别为A(4,4),B(6,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则端点C和D的坐标分别为()A.(2,2),(3,2) B.(2,4),(3,1)C.(2,2),(3,1) D.(3,1),(2,2)3.二次函数的图象如图,若一元二次方程有实数解,则k的最小值为A. B. C. D.04.如图,中,.将绕点顺时针旋转得到,边与边交于点(不在上),则的度数为()A. B. C. D.5.关于反比例函数,下列说法正确的是()A.函数图像经过点(2,2); B.函数图像位于第一、三象限;C.当时,函数值随着的增大而增大; D.当时,.6.已知圆锥的母线长为4,底面圆的半径为3,则此圆锥的侧面积是()A.6π B.9π C.12π D.16π7.桌面上放有6张卡片(卡片除正面的颜色不同外,其余均相同),其中卡片正面的颜色3张是绿色,2张是红色,1张是黑色.现将这6张卡片洗匀后正面向下放在桌面上,从中随机抽取一张,抽出的卡片正面颜色是绿色的概率是()A. B. C. D.8.如图,⊙O是△ABC的外接圆,∠B=60°,OP⊥AC于点P,OP=2,则⊙O的半径为().A.4 B.6 C.8 D.129.下列是我国四大银行的商标,其中不是轴对称图形的是()A. B. C. D.10.抛物线y=x2的图象向左平移2个单位,再向下平移1个单位,则所得抛物线的解析式为()A. B. C. D.二、填空题(每小题3分,共24分)11.△ABC中,E,F分别是AC,AB的中点,连接EF,则S△AEF:S△ABC=_____.12.已知x=1是一元二次方程x2﹣3x+a=0的一个根,则方程的另一个根为_____.13.已知和时,多项式的值相等,则m的值等于______.14.绕着A点旋转后得到,若,,则旋转角等于_____.15.不透明的口袋里有除颜色外其它均相同的红、白、黑小球共计120个,玲玲通过多次摸球实验后发现,摸到红球和黑球的概率稳定在和,那么口袋中白球的个数极有可能是_______个.16.若函数是二次函数,则的值为__________.17.计算的结果是_______.18.已知x=2y﹣3,则代数式4x﹣8y+9的值是_____.三、解答题(共66分)19.(10分)我市某公司用800万元购得某种产品的生产技术后,进一步投入资金1550万元购买生产设备,进行该产品的生产加工,已知生产这种产品每件还需成本费40元.经过市场调研发现:该产品的销售单价需要定在200元到300元之间较为合理.销售单价(元)与年销售量(万件)之间的变化可近似的看作是如下表所反应的一次函数:销售单价(元)200230250年销售量(万件)14119(1)请求出与之间的函数关系式,并直接写出自变量的取值范围;(2)请说明投资的第一年,该公司是盈利还是亏损?若盈利,最大利润是多少?若亏损,最少亏损是多少?20.(6分)计算:—.21.(6分)如图,请在下列四个论断中选出两个作为条件,推出四边形ABCD是平行四边形,并予以证明(写出一种即可).①AD∥BC;②AB=CD;③∠A=∠C;④∠B+∠C=180°.已知:在四边形ABCD中,____________.求证:四边形ABCD是平行四边形.22.(8分)鄂州某个体商户购进某种电子产品的进价是50元/个,根据市场调研发现售价是80元/个时,每周可卖出160个,若销售单价每个降低2元,则每周可多卖出20个.设销售价格每个降低x元(x为偶数),每周销售量为y个.(1)直接写出销售量y个与降价x元之间的函数关系式;(2)设商户每周获得的利润为W元,当销售单价定为多少元时,每周销售利润最大,最大利润是多少元?23.(8分)某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且利润率不得高于50%.经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:售价x(元/千克)455055销售量y(千克)11010090(1)求y与x之间的函数表达式,并写出自变量的范围;(2)设每天销售该商品的总利润为W(元),求W与x之间的函数表达式(利润=收入-成本),并求出售价为多少元时每天销售该商品所获得最大利润,最大利润是多少?24.(8分)为了提高学生书写汉字的能力,增强保护汉字的意识,某校举办了首届“汉字听写大赛”,学生经选拔后进入决赛,测试同时听写100个汉字,每正确听写出一个汉字得1分,本次决赛,学生成绩为(分),且,将其按分数段分为五组,绘制出以下不完整表格:组别成绩(分)频数(人数)频率一20.04二100.2三14b四a0.32五80.16请根据表格提供的信息,解答以下问题:(1)本次决赛共有_________名学生参加;(2)直接写出表中_________,_________;(3)请补全下面相应的频数分布直方图;(4)若决赛成绩不低于80分为优秀,则本次大赛的优秀率为_________.25.(10分)某商城某专卖店销售每件成本为40元的商品,从销售情况中随机抽取一些情况制成统计表如下:(假设当天定的售价是不变的,且每天销售情况均服从这种规律)每件销售价(元)506070758085……每天售出件数30024018015012090……(1)观察这些数据,找出每天售出件数y与每件售价x(元)之间的函数关系,并写出该函数关系式;(2)该店原有两名营业员,但当每天售出量超过168件时,则必须增派一名营业员才能保证营业,设营业员每人每天工资为40元,求每件产品定价多少元,才能使纯利润最大(纯利润指的是收入总价款扣除成本及营业员工资后的余额,其他开支不计).26.(10分)已知AB是⊙O的直径,C,D是⊙O上AB同侧两点,∠BAC=26°.(Ⅰ)如图1,若OD⊥AB,求∠ABC和∠ODC的大小;(Ⅱ)如图2,过点C作⊙O的切线,交AB的延长线于点E,若OD∥EC,求∠ACD的大小.
参考答案一、选择题(每小题3分,共30分)1、B【分析】根据从正面看得到的图形是主视图,可得答案.【详解】解:从正面看是:大正方形里有一个小正方形,∴主视图为:
故选:B.【点睛】本题考查了简单组合体的三视图,从正面看得到的图形是主视图,注意看不到的线画虚线.2、C【解析】直接利用位似图形的性质得出对应点坐标乘以得出即可.【详解】解:∵线段AB两个端点的坐标分别为A(4,4),B(6,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,∴端点的坐标为:(2,2),(3,1).故选C.【点睛】本题考查位似变换;坐标与图形性质,数形结合思想解题是本题的解题关键.3、A【解析】∵一元二次方程ax2+bx+k=0有实数解,∴可以理解为y=ax2+bx和y=−k有交点,由图可得,−k≤4,∴k≥−4,∴k的最小值为−4.故选A.4、D【分析】根据旋转的性质可得∠B′=∠B=30°,∠BOB′=52°,再由三角形外角的性质即可求得的度数.【详解】∵△A′OB′是由△AOB绕点O顺时针旋转得到,∠B=30°,∴∠B′=∠B=30°,∵△AOB绕点O顺时针旋转52°,∴∠BOB′=52°,∵∠A′CO是△B′OC的外角,∴∠A′CO=∠B′+∠BOB′=30°+52°=82°.故选D.【点睛】本题主要考查了旋转的性质,熟知旋转的性质是解决问题的关键.5、C【解析】直接利用反比例函数的性质分别分析得出答案.【详解】A、关于反比例函数y=-,函数图象经过点(2,-2),故此选项错误;B、关于反比例函数y=-,函数图象位于第二、四象限,故此选项错误;C、关于反比例函数y=-,当x>0时,函数值y随着x的增大而增大,故此选项正确;D、关于反比例函数y=-,当x>1时,y>-4,故此选项错误;故选C.【点睛】此题主要考查了反比例函数的性质,正确掌握相关函数的性质是解题关键.6、C【分析】圆锥的侧面积就等于经母线长乘底面周长的一半.依此公式计算即可.【详解】解:底面圆的半径为3,则底面周长=6π,侧面面积=×6π×4=12π,故选C.考点:圆锥的计算.7、A【详解】∵桌面上放有6张卡片,卡片正面的颜色3张是绿色,2张是红色,1张是黑色,∴抽出的卡片正面颜色是绿色的概率是:.故选A.8、A【解析】∵圆心角∠AOC与圆周角∠B所对的弧都为,且∠B=60°,∴∠AOC=2∠B=120°(在同圆或等圆中,同弧所对圆周角是圆心角的一半).又OA=OC,∴∠OAC=∠OCA=30°(等边对等角和三角形内角和定理).∵OP⊥AC,∴∠AOP=90°(垂直定义).在Rt△AOP中,OP=2,∠OAC=30°,∴OA=2OP=4(直角三角形中,30度角所对的边是斜边的一半).∴⊙O的半径4.故选A.9、A【分析】根据轴对称图形和的概念和各图形特点解答即可.【详解】解:A、不是轴对称图形,故本选项正确;
B、是轴对称图形,故本选项错误;
C、是轴对称图形,故本选项错误;
D、是轴对称图形,故本选项错误;
故选:A.【点睛】本题考查了轴对称图形的特点,判断轴对称图形的关键是寻找对称轴,图象沿对称轴折叠后可重合.10、A【分析】抛物线平移不改变a的值.【详解】原抛物线的顶点为(0,0),向左平移2个单位,再向下平移1个单位,那么新抛物线的顶点为(﹣2,﹣1),可设新抛物线的解析式为:y=(x﹣h)2+k,代入得:y=(x+2)2﹣1=x2+4x+1.故选A.二、填空题(每小题3分,共24分)11、【分析】由E、F分别是AB、AC的中点,可得EF是△ABC的中位线,直接利用三角形中位线定理即可求得BC=1EF,然后根据相似三角形的性质即可得到结论.【详解】∵△ABC中,E、F分别是AB、AC的中点,EF=4,∴EF是△ABC的中位线,∴BC=1EF,EF∥BC,∴△AEF∽△ABC,∴S△AEF:S△ABC=()1=,故答案为:.【点睛】本题考查了三角形中位线的性质,三角形面积比等于相似比的平方,三角形中位线是对应边的一半,所以得到相似比是1:1.12、【解析】设方程另一个根为x,根据根与系数的关系得,然后解一次方程即可.【详解】设方程另一个根为x,根据题意得x+1=3,解得x=2.故答案为:x=2.【点睛】本题主要考查一元二次方程根与系数的关系,熟记公式是解决本题的关键.13、或1【分析】根据和时,多项式的值相等,得出,解方程即可.【详解】解:和时,多项式的值相等,,化简整理,得,,解得或1.故答案为或1.【点睛】本题考查多项式以及代数式求值,正确理解题意是解题的关键.14、50°或210°【分析】首先根据题意作图,然后由∠BAC′=130°,∠BAC=80°,即可求得答案.【详解】解:∵∠BAC′=130°,∠BAC=80°,
∴如图1,∠CAC′=∠BAC′-∠BAC=50°,
如图2,∠CAC′=∠BAC′+∠BAC=210°.
∴旋转角等于50°或210°.
故答案为:50°或210°.【点睛】本题考查了旋转的性质.注意掌握数形结合思想与分类讨论思想的应用.15、1【分析】由摸到红球和黑球的概率稳定在50%和30%附近得出口袋中得到白色球的概率,进而求出白球个数即可.【详解】设白球个数为:x个,∵摸到红球和黑球的概率稳定在50%和30%左右,∴口袋中得到白色球的概率为1−50%−30%=20%,∴=20%,解得:x=1,即白球的个数为1个,故答案为:1.【点睛】此题主要考查了利用频率估计概率,根据大量反复试验下频率稳定值即概率得出是解题关键.16、-1【分析】直接利用二次函数的定义分析得出答案.【详解】解:∵函数是二次函数,
∴m1+m=1,且m-1≠0,
∴m=−1.
故答案为-1.【点睛】此题主要考查了二次函数的定义,正确把握二次函数的次数与系数的值是解题关键.17、【分析】根据分式的加减运算法则,先通分,再加减.【详解】解:原式====.故答案为:.【点睛】本题考查了分式的加减运算,解题的关键是掌握运算法则和运算顺序.18、-1.【分析】根据x=2y﹣1,可得:x﹣2y=﹣1,据此求出代数式4x﹣8y+9的值是多少即可.【详解】∵x=2y﹣1,∴x﹣2y=﹣1,∴4x﹣8y+9=4(x﹣2y)+9=4×(﹣1)+9=﹣12+9=﹣1故答案为:﹣1.【点睛】本题考查的是求代数式的值,解题关键是由x=2y﹣1得出x﹣2y=﹣1.三、解答题(共66分)19、(1);(2)亏损,赔了110万元【分析】(1)设,将,代入求得系数即可.(2)根据年获利=单件利润销量-800-1550【详解】解:(1)设,;(2),对称轴,∵,,∴时,(万元)1550+800-2240=110(万元)∴赔了110万元.【点睛】本题考查了二次函数的实际中的应用,首先要明确题意,确定变量,建立模型解答.20、-3【分析】按顺序化简二次根式,代入特殊角的三角函数值,进行0次幂运算,负指数幂运算,然后再按运算顺序进行计算即可.【详解】解:-=-=-3【点睛】本题考查了特殊角的三角函数值,实数的混合运算等,正确把握各运算的运算法则是解题的关键.21、已知:①③(或①④或②④或③④),证明见解析.【解析】试题分析:根据平行四边形的判定方法就可以组合出不同的结论,然后即可证明.其中解法一是证明两组对角相等的四边形是平行四边形;解法二是证明两组对边平行的四边形是平行四边形;解法三是证明一组对边平行且相等的四边形是平行四边形;解法四是证明两组对角相等的四边形是平行四边形.试题解析:已知:①③,①④,②④,③④均可,其余均不可以.解法一:已知:在四边形ABCD中,①AD∥BC,③∠A=∠C,求证:四边形ABCD是平行四边形.证明:∵AD∥BC,∴∠A+∠B=180°,∠C+∠D=180°.∵∠A=∠C,∴∠B=∠D.∴四边形ABCD是平行四边形.解法二:已知:在四边形ABCD中,①AD∥BC,④∠B+∠C=180°,求证:四边形ABCD是平行四边形.证明:∵∠B+∠C=180°,∴AB∥CD,又∵AD∥BC,∴四边形ABCD是平行四边形;解法三:已知:在四边形ABCD中,②AB=CD,④∠B+∠C=180°,求证:四边形ABCD是平行四边形.证明:∵∠B+∠C=180°,∴AB∥CD,又∵AB=CD,∴四边形ABCD是平行四边形;解法四:已知:在四边形ABCD中,③∠A=∠C,④∠B+∠C=180°,求证:四边形ABCD是平行四边形.证明:∵∠B+∠C=180°,∴AB∥CD,∴∠A+∠D=180°,又∵∠A=∠C,∴∠B=∠D,∴四边形ABCD是平行四边形.考点:平行四边形的判定.22、(1);(2)当销售单价定为74元或72元时,每周销售利润最大,最大利润是5280元;【分析】(1)根据题意,由售价是80元/个时,每周可卖出160个,若销售单价每个降低2元,则每周可多卖出20个,可得销售量y个与降价x元之间的函数关系式;
(2)根据题意结合每周获得的利润W=销量×每个的利润,进而利用二次函数增减性求出答案;【详解】解:(1)依题意有:;
(2)依题意有:
W=(80-50-x)(10x+160)===-10(x-7)2+5290,
因为x为偶数,
所以当销售单价定为80-6=74元或80-8=72时,每周销售利润最大,最大利润是5280元;【点睛】此题主要考查了二次函数的应用以及一元二次方程的应用等知识,正确利用销量×每个的利润=W得出函数关系式是解题关键.23、(1)y=-2x+200(40≤x≤60);(2)售价为60元时每天销售该商品所获得最大利润,最大利润是1600.【解析】(1)利用待定系数法求解可得;
(2)根据“总利润=每千克利润×销售量”可得函数解析式,将其配方成顶点式即可得最值情况;【详解】(1)设y=kx+b,将(50,100)、(55,90)代入,得:50k+b=10055k+b=90∴y=-2x+200(40≤x≤60);(2)W=(x-40)(-2x+200)=-2=-2∵-2<0开口向下∴当x<70时,W随x的增大而增大,当x=60时,W最大=1600,答:售价为60元时每天销售该商品所获得最大利润,最大利润是1600.【点睛】考查二次函数的应用,解题的关键是熟练掌握待定系数法求函数解析式及二次函数的性质.24、(1)50;(2)16;0.28;(3)见详解;(4)48%【分析】(1)根据一组的频数和频率比求出总人数;(2)用总人数乘以第四组的频率出a;再用第三组的频数和总数比求出b;(3)根据(2)得出的a的值,补全统计图;
(4)用成绩不低于80分的频数除以总数,即可得本次大赛的优秀率.【详解】解(1)抽查的学生总人数是:2÷0.04=50(人),故答案为50;
(2)a=50×0.32=16,b=14÷50=0.28,故答案为16,0.28;
(3)如图,(4)优秀率为(16+8)÷50=48%,故答案为48%.【点睛】本题考查了频数分布直方图和概率,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题,概率==所求情况数与总情况数之比.25、(1)y=-6x+600;(2)每件产品定价72元,才能使纯利润最大,纯利润最大为5296元.【分析】(1)经过图表数据分析,每天售出件数y与每件售价x(元)之间的函数关系为一次函数,设y=kx+b,解出k、b即可求出;(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 江苏省南京市秦淮区2023-2024学年八年级上学期期中语文试卷(含答案解析)
- 中班安全教育教案18篇
- 交通运输企业安全生产标准化
- 2024至2030年中国干燥箱/培养箱行业投资前景及策略咨询研究报告
- 2024至2030年中国小型前后进平板夯行业投资前景及策略咨询研究报告
- 样本及抽样分布2
- 2024年河南省中考语文试题含答案
- 2024年中国拷贝机市场调查研究报告
- 2024年中国功耗测试仪市场调查研究报告
- 仓库用电协议书范本大全
- 人教版(2019)必修 第三册Unit 5 The value of money 单元集体备课教案
- 第1~12课(考点清单)-2024-2025学年七年级历史上学期期中考点大串讲(统编版2024)
- 产业转移现状研究报告
- 会议培训合同协议书
- 家电以旧换新风险评估与管理方案
- 第12关:小说阅读(含答案与解析)-2024年中考语文一轮复习题型专练
- 20242025七年级上册科学浙教版新教材第1章第2节科学测量1长度测量讲义教师版
- 2024年4月自考《训诂学》考试真题试卷
- 部编版(2024版)七年级历史上册第12课《大一统王朝的巩固》精美课件
- 2024年山东普通高中学业水平等级考试政治(解析版)
- 构建安全生产风险管控“六项机制”工作实施方案
评论
0/150
提交评论