2022-2023学年江苏省南通市启东市东安中学数学九上期末检测模拟试题含解析_第1页
2022-2023学年江苏省南通市启东市东安中学数学九上期末检测模拟试题含解析_第2页
2022-2023学年江苏省南通市启东市东安中学数学九上期末检测模拟试题含解析_第3页
2022-2023学年江苏省南通市启东市东安中学数学九上期末检测模拟试题含解析_第4页
2022-2023学年江苏省南通市启东市东安中学数学九上期末检测模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.若分式的运算结果为,则在中添加的运算符号为()A.+ B.- C.+或÷ D.-或×2.抛物线的项点坐标是()A. B. C. D.3.如图点D、E分别在△ABC的两边BA、CA的延长线上,下列条件能判定ED∥BC的是().A.; B.;C.; D..4.计算:tan45°+sin30°=(

)A. B. C. D.5.已知⊙O的半径为5,若PO=4,则点P与⊙O的位置关系是()A.点P在⊙O内 B.点P在⊙O上 C.点P在⊙O外 D.无法判断6.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF平分∠CAB,交CD于点E,交CB于点F,若AC=3,AB=5,则CE的长为()A. B. C. D.7.如图1,点从的顶点出发,沿匀速运动到点,图2是点运动时,线段的长度随时间变化的关系图象,其中为曲线部分的最低点,则的面积为()A. B. C. D.8.二次函数经过平移后得到二次函数,则平移方法可为()A.向左平移1个单位,向上平移1个单位B.向左平移1个单位,向下平移1个单位C.向右平移1个单位,向下平移1个单位D.向右平移1个单位,向上平移1个单位9.若两个相似三角形的周长之比为1∶4,则它们的面积之比为()A.1∶2 B.1∶4 C.1∶8 D.1∶1610.在△ABC中,AD是BC边上的高,∠C=45°,sinB=,AD=1.则△ABC的面积为()A.1 B. C. D.211.反比例函数的图象分布的象限是()A.第一、三象限 B.第二、四象限 C.第一象限 D.第二象限12.二次函数y=x2-2x+3的最小值是()A.-2B.2C.-1D.1二、填空题(每题4分,共24分)13.如图,矩形中,边长,两条对角线相交所成的锐角为,是边的中点,是对角线上的一个动点,则的最小值是_______.14.一元二次方程的两根之积是_________.15.有一条抛物线,三位学生分别说出了它的一些性质:甲说:对称轴是直线;乙说:与轴的两个交点的距离为6;丙说:顶点与轴的交点围成的三角形面积等于9,则这条抛物线解析式的顶点式是______.16.小明身高1.76米,小亮身高1.6米,同一时刻他们站在太阳光下,小明的影子长为1米,则小亮的影长是_____米.17.如图,将边长为4的正方形沿其对角线剪开,再把沿着方向平移,得到,当两个三角形重叠部分的面积为3时,则的长为_________.18.若一元二次方程的两根为,,则__________.三、解答题(共78分)19.(8分)如图1,在Rt△ABC中,∠B=90°,BC=2AB=8,点D,E分别是边BC,AC的中点,连接DE,将△EDC绕点C按顺时针方向旋转,记旋转角为α.(1)问题发现①当时,;②当时,(2)拓展探究试判断:当0°≤α<360°时,的大小有无变化?请仅就图2的情况给出证明.(3)问题解决当△EDC旋转至A、D、E三点共线时,直接写出线段BD的长.20.(8分)如图,AB是⊙O的直径,点C、D在⊙O上,AD与BC相交于点E.连接BD,作∠BDF=∠BAD,DF与AB的延长线相交于点F.(1)求证:DF是⊙O的切线;(2)若DF∥BC,求证:AD平分∠BAC;(3)在(2)的条件下,若AB=10,BD=6,求CE的长.21.(8分)求证:对角线相等的平行四边形是矩形.(要求:画出图形,写出已知和求证,并给予证明)22.(10分)2019年6月,习近平总书记对垃圾分类工作作出重要指示.实行垃圾分类,关系广大人民群众生活环境,关系节约使用资源,也是社会文明水平的一个重要体现.兴国县某校为培养学生垃圾分类的好习惯,在校园内摆放了几组垃圾桶,每组4个,分别是“可回收物”、“有害垃圾”、“厨余垃圾”和“其它垃圾”(如下图,分别记为A、B、C、D).小超同学由于上课没有听清楚老师的讲解,课后也没有认真学习教室里张贴的“垃圾分类常识”,对垃圾分类标准不是很清楚,于是先后将一个矿泉水瓶(简记为水瓶)和一张擦了汗的面巾纸(简记为纸巾)随机扔进了两个不同的垃圾桶。说明:矿泉水瓶属于“可回收物”,擦了汗的面巾纸属于“其它垃圾”.(1)小超将矿泉水瓶随机扔进4个垃圾桶中的某一个桶,恰好分类正确的概率是_____;(2)小超先后将一个矿泉水瓶和一张擦了汗的面巾纸随机扔进了两个不同的垃圾桶,请用画树状图或列表的方法,求出两个垃圾都分类错误的概率.23.(10分)如图,AB是⊙O的直径,CD切⊙O于点C,BE⊥CD于E,连接AC,BC.(1)求证:BC平分∠ABE;(2)若⊙O的半径为3,cosA=,求CE的长.24.(10分)某商店销售一种商品,每件成本8元,规定每件商品售价不低于成本,且不高于20元,经市场调查每天的销售量y(件)与每件售价x(元)满足一次函数关系,部分数据如下表:售价x(元件)1011121314x销售量y(件)100908070(1)将上面的表格填充完整;(2)设该商品每天的总利润为w元,求w与x之间的函数表达式;(3)计算(2)中售价为多少元时,获得最大利润,最大利润是多少?25.(12分)如图,在平行四边形中,过点作,垂足为,连接,为上一点,且.(1)求证:.(2)若,,,求的长.26.如图,在Rt△ABC中,AB=AC,D、E是斜边BC上的两点,∠EAD=45°,将△ADC绕点A顺时针旋转90°,得到△AFB,连接EF.(1)求证:EF=ED;(2)若AB=2,CD=1,求FE的长.

参考答案一、选择题(每题4分,共48分)1、C【分析】根据分式的运算法则即可求出答案.【详解】解:+=,÷==x,故选:C.【点睛】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.2、D【分析】由二次函数顶点式:,得出顶点坐标为,根据这个知识点即可得出此二次函数的顶点坐标.【详解】解:由题知:抛物线的顶点坐标为:故选:D.【点睛】本题主要考查的二次函数的顶点式的特点以及顶点坐标的求法,掌握二次函数的顶点式是解题的关键.3、D【分析】根据选项选出能推出,推出或的即可判断.【详解】解:、∵,,不符合两边对应成比例及夹角相等的相似三角形判定定理.无法判断与相似,即不能推出,故本选项错误;、,,,,即不能推出,故本选项错误;、由可知,不能推出,即不能推出,即不能推出两直线平行,故本选项错误;、∵,,,,,,故本选项正确;故选:.【点睛】本题考查了相似三角形的性质和判定和平行线的判定的应用,主要考查学生的推理和辨析能力,注意:有两组对应边的比相等,且这两边的夹角相等的两三角形相似.4、C【解析】代入45°角的正切函数值和30°角的正弦函数值计算即可.【详解】解:原式=故选C.【点睛】熟记“45°角的正切函数值和30°角的正弦函数值”是正确解答本题的关键.5、A【分析】已知圆O的半径为r,点P到圆心O的距离是d,①当r>d时,点P在⊙O内,②当r=d时,点P在⊙O上,③当r<d时,点P在⊙O外,根据以上内容判断即可.【详解】∵⊙O的半径为5,若PO=4,∴4<5,∴点P与⊙O的位置关系是点P在⊙O内,故选:A.【点睛】本题考查了点与圆的位置关系的应用,注意:已知圆O的半径为r,点P到圆心O的距离是d,①当r>d时,点P在⊙O内,②当r=d时,点P在⊙O上,③当r<d时,点P在⊙O外.6、A【分析】根据三角形的内角和定理得出∠CAF+∠CFA=90°,∠FAD+∠AED=90°,根据角平分线和对顶角相等得出∠CEF=∠CFE,即可得出EC=FC,再利用相似三角形的判定与性质得出答案.【详解】过点F作FG⊥AB于点G,∵∠ACB=90°,CD⊥AB,∴∠CDA=90°,∴∠CAF+∠CFA=90°,∠FAD+∠AED=90°,∵AF平分∠CAB,∴∠CAF=∠FAD,∴∠CFA=∠AED=∠CEF,∴CE=CF,∵AF平分∠CAB,∠ACF=∠AGF=90°,∴FC=FG,∵∠B=∠B,∠FGB=∠ACB=90°,∴△BFG∽△BAC,∴,∵AC=3,AB=5,∠ACB=90°,∴BC=4,∴,∵FC=FG,∴,解得:FC=,即CE的长为.故选A.【点睛】本题考查了直角三角形性质、等腰三角形的性质和判定,三角形的内角和定理以及相似三角形的判定与性质等知识,关键是推出∠CEF=∠CFE.7、C【分析】根据图象可知点M在AB上运动时,此时AM不断增大,而从B向C运动时,AM先变小后变大,从而得出AC=AB,及时AM最短,再根据勾股定理求出时BM的长度,最后即可求出面积.【详解】解:∵当时,AM最短∴AM=3∵由图可知,AC=AB=4∴当时,在中,∴∴故选:C.【点睛】本题考查函数图像的认识及勾股定理,解题关键是将函数图像转化为几何图形中各量.8、D【分析】解答本题可根据二次函数平移的特征,左右平移自变量x加减(左加右减),上下平移y加减(下加上减),据此便能得出答案.【详解】由得平移方法可为向右平移1个单位,向上平移1个单位故答案为:D.【点睛】本题考查了二次函数的平移问题,掌握次函数的平移特征是解题的关键.9、D【分析】相似三角形的周长比等于相似比,面积比等于相似比的平方.【详解】∵两个相似三角形的周长之比为1∶4∴它们的面积之比为1∶16故选D.【点睛】本题考查相似三角形的性质,本题属于基础应用题,只需学生熟练掌握相似三角形的性质,即可完成.10、C【分析】先由三角形的高的定义得出∠ADB=∠ADC=90°,解Rt△ADB,得出AB=3,根据勾股定理求出BD=2,解Rt△ADC,得出DC=1,然后根据三角形的面积公式计算即可;【详解】在Rt△ABD中,∵sinB==,又∵AD=1,∴AB=3,∵BD2=AB2﹣AD2,∴BD.在Rt△ADC中,∵∠C=45°,∴CD=AD=1.∴BC=BD+DC=2+1,∴S△ABC=•BC•AD=×(2+1)×1=,故选:C.【点睛】本题考查了三角形的面积问题,掌握三角形的面积公式是解题的关键.11、A【解析】先根据反比例函数的解析式判断出k的符号,再根据反比例函数的性质即可得出结论.【详解】解:∵反比例函数y=中,k=2>0,

∴反比例函数y=的图象分布在一、三象限.

故选:A.【点睛】本题考查的是反比例函数的性质,熟知反比例函数y=(k≠0)中,当k>0时,反比例函数图象的两个分支分别位于一三象限是解答此题的关键.12、B【解析】试题解析:因为原式=x1-1x+1+1=(x-1)11,所以原式有最小值,最小值是1.故选B.二、填空题(每题4分,共24分)13、【分析】根据对称性,作点B关于AC的对称点B′,连接B′M与AC的交点即为所求作的点P,再求直角三角形中30的临边即可.【详解】如图,作点B关于AC的对称点B′,连接B′M,交AC于点P,∴PB′=PB,此时PB+PM最小,∵矩形ABCD中,两条对角线相交所成的锐角为60,∴△ABP是等边三角形,∴∠ABP=60,∴∠B′=∠B′BP=30,∵∠DBC=30,∴∠BMB′=90,在Rt△BB′M中,BM=4,∠B′=30°,∴BB’=2BM=8∴B′M=,∴PM+PB′=PM+PB=B′M=4.故答案为4.【点睛】本题主要考查了最短路线问题,解决本题的关键是作点B关于AC的对称点B′.14、【分析】根据一元二次方程两根之积与系数的关系可知.【详解】解:根据题意有两根之积x1x2==-1.

故一元二次方程-x2+3x+1=0的两根之积是-1.

故答案为:-1.【点睛】本题重点考查了一元二次方程根与系数的关系,是基本题型.两根之积x1x2=.15、,【分析】根据对称轴是直线x=2,与x轴的两个交点距离为6,可求出与x轴的两个交点的坐标为(-1,0),(5,0);再根据顶点与x轴的交点围成的三角形面积等于9,可得顶点的纵坐标为±1,然后利用顶点式求得抛物线的解析式即可.【详解】解:∵对称轴是直线x=2,与x轴的两个交点距离为6,∴抛物线与x轴的两个交点的坐标为(-1,0),(5,0),设顶点坐标为(2,y),∵顶点与x轴的交点围成的三角形面积等于9,∴,∴y=1或y=-1,∴顶点坐标为(2,1)或(2,-1),设函数解析式为y=a(x-2)2+1或y=a(x-2)2-1;把点(5,0)代入y=a(x-2)2+1得a=-;把点(5,0)代入y=a(x-2)2-1得a=;∴满足上述全部条件的一条抛物线的解析式为y=-(x-2)2+1或y=(x-2)2-1.故答案为:,.【点睛】此题考查了二次函数的图像与性质,待定系数法求函数解析式.解题的关键是理解题意,采用待定系数法求解析式,若给了顶点,注意采用顶点式简单.16、【分析】利用同一时刻实际物体与影长的比值相等进而求出即可.【详解】设小亮的影长为xm,由题意可得:,解得:x=.故答案为:.【点睛】此题主要考查了相似三角形的应用,正确利用物体高度与影长的关系是解题关键.17、1或1【分析】设AC、交于点E,DC、交于点F,且设,则,,列出方程即可解决问题.【详解】设AC、交于点E,DC、交于点F,且设,则,,重叠部分的面积为,由,解得或1.即或1.故答案是1或1.【点睛】本题考查了平移的性质、菱形的判定和正方形的性质综合,准确分析题意是解题的关键.18、4【分析】利用韦达定理计算即可得出答案.【详解】根据题意可得:故答案为4.【点睛】本题考查的是一元二次方程根与系数的关系,若和是方程的两个解,则.三、解答题(共78分)19、(1)①,②.(2)无变化;理由参见解析.(3),.【分析】(1)①当α=0°时,在Rt△ABC中,由勾股定理,求出AC的值是多少;然后根据点D、E分别是边BC、AC的中点,分别求出AE、BD的大小,即可求出的值是多少.②α=180°时,可得AB∥DE,然后根据,求出的值是多少即可.(2)首先判断出∠ECA=∠DCB,再根据,判断出△ECA∽△DCB,即可求出的值是多少,进而判断出的大小没有变化即可.(3)根据题意,分两种情况:①点A,D,E所在的直线和BC平行时;②点A,D,E所在的直线和BC相交时;然后分类讨论,求出线段BD的长各是多少即可.【详解】(1)①当α=0°时,∵Rt△ABC中,∠B=90°,∴AC=,∵点D、E分别是边BC、AC的中点,∴,BD=8÷2=4,∴.②如图1,,当α=180°时,可得AB∥DE,∵,∴(2)如图2,,当0°≤α<360°时,的大小没有变化,∵∠ECD=∠ACB,∴∠ECA=∠DCB,又∵,∴△ECA∽△DCB,∴.(3)①如图3,,∵AC=4,CD=4,CD⊥AD,∴AD=∵AD=BC,AB=DC,∠B=90°,∴四边形ABCD是矩形,∴BD=AC=.②如图4,连接BD,过点D作AC的垂线交AC于点Q,过点B作AC的垂线交AC于点P,,∵AC=,CD=4,CD⊥AD,∴AD=,∵点D、E分别是边BC、AC的中点,∴DE==2,∴AE=AD-DE=8-2=6,由(2),可得,∴BD=.综上所述,BD的长为或.20、(1)证明见解析;(2)证明见解析;(3).【分析】(1)如图,连结OD,只需推知OD⊥DF即可证得结论;(2)根据平行线的性质得到∠FDB=∠CBD,由圆周角的性质可得∠CAD=∠BAD=∠CBD=∠BDF,即AD平分∠BAC;(3)由勾股定理可求AD的长,通过△BDE∽△ADB,可得,可求DE=,AE=,由锐角三角函数可求CE的长.【详解】(1)连接OD,CD,∵AB是直径,∴∠ADB=90°,∴∠ADO+∠ODB=90°,∵OA=OD,∴∠BAD=∠ADO,∵∠BDF=∠BAD,∴∠BDF+∠ODB=90°,∴∠ODF=90°,∴OD⊥DF,∴DF是⊙O的切线;(2)∵DF∥BC,∴∠FDB=∠CBD,∵,∴∠CAD=∠CBD,且∠BDF=∠BAD,∴∠CAD=∠BAD=∠CBD=∠BDF,∴AD平分∠BAC;(3)∵AB=10,BD=6,∴AD=,∵∠CBD=∠BAD,∠ADB=∠BDE=90°,∴△BDE∽△ADB,∴,∴,∴DE=,∴AE=AD﹣DE=,∵∠CAD=∠BAD,∴sin∠CAD=sin∠BAD∴∴∴CE=【点睛】本题考查了圆的综合问题,掌握平行线的性质、圆周角的性质、勾股定理、相似三角形的性质以及判定定理、锐角三角函数的定义是解题的关键.21、见解析.【解析】分析:首先根据题意写出已知和求证,再根据全等三角形的判定与性质,可得∠ACD与∠BCD的关系,根据平行四边形的邻角互补,可得∠ACD的度数,根据矩形的判定,可得答案.详解:已知:如图,在□ABCD中,AC=BD.求证:□ABCD是矩形.证明:∵四边形ABCD是平行四边形,∴AD∥CB,AD=BC,在△ADC和△BCD中,∵,∴△ADC≌△BCD,∴∠ADC=∠BCD.又∵AD∥CB,∴∠ADC+∠BCD=180°,∴∠ADC=∠BCD=90°.∴平行四边形ABCD是矩形.点睛:本题考查了矩形的判定,利用全等三角形的判定与性质得出∠ADC=∠BCD是解题关键.22、(1);(2)【分析】(1)根据概率公式即可得答案;(2)画出树状图,可得出总情况数和两个垃圾都分类错误的情况数,利用概率公式即可得答案.【详解】(1)∵共有4组,每组4个桶,∴共有16个桶,∵分类正确的有4个桶,∴分类正确的概率为=.(2)画树状图得:∵共有12种等可能的结果,两个垃圾都分类错误的情况有7种:BA,BC,CA,CB,DA,DB,DC∴P(两个垃圾都分类错误)=.【点睛】本题考查利用列表法或树状图法求概率,概率=所求情况数与总情况数的比;熟练掌握概率公式是解题关键.23、(1)证明见解析;(2).【分析】(1)根据切线的性质得OC⊥DE,则可判断OC∥BE,根据平行线的性质得∠OCB=∠CBE,加上∠OCB=∠CBO,所以∠OBC=∠CBE;(2)由已知数据可求出AC,BC的长,易证△BEC∽△BCA,由相似三角形的性质即可求出CE的长.【详解】(1)证明:∵CD是⊙O的切线,∴OC⊥DE,而BE⊥DE,∴OC∥BE,∴∠OCB=∠CBE,而OB=OC,∴∠OCB=∠CBO,∴∠OBC=∠CBE,即BC平分∠ABE;(2)∵⊙O的半径为3,∴AB=6,∵AB是⊙O的直径,∴∠ACB=90°,∵cosA=,∴=,∴AC=2,∴BC==2,∵∠ABC=∠ECB,∠ACB=∠BEC=90°,∴△BEC∽△BCA,∴=,即=,∴CE=.【点睛】本题考查了切线的性质,平行线的判定和性质,勾股定理的运用以及相似三角形的判定和性质,熟记和圆有关的各种性质定理是解题的关键.24、(1)见解析;(2)w=﹣10x2+280x﹣1600;(3)售价为14元时,获得最大利润,最大利润是360元.【分析】(1)设y=kx+b,由待定系数法可列出方程组:,解得:则y=﹣10x+200,当x=14时,y=60.(2)由题意得,w与x之间的函数表达式为:w=(x﹣8)(﹣10x+200)=﹣10x2+280x﹣1600;(3)∵w=﹣10x2+280x﹣1600=﹣10(x﹣14)2+360,故售价为14元时,获得最大利润,最大利润是360元.【详解】解:(1)设销售量y(件)与每件售价x(元)满足一次函数关系为y=kx+b,∴,解得:,∴销售量y(件)与每件售价x(元)满足一次函数关系为y=﹣10x+200,当x=14时,y=60,故答案为:60,﹣10x+200;(2)由题意得,w与x之间的函数表达式为:w=(x﹣8)(﹣10x+200)=﹣10x2+280x﹣1600;(3)∵w=﹣10x2+280x﹣1600=﹣10(x﹣14)2+360,故售价为14元时

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论