版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.在如图所示的网格纸中,有A、B两个格点,试取格点C,使得△ABC是等腰三角形,则这样的格点C的个数是()A.4 B.6 C.8 D.102.如图,在中,,,则的值是()A. B.1 C. D.3.下列成语中描述的事件必然发生的是()A.水中捞月 B.日出东方 C.守株待兔 D.拔苗助长4.在Rt△ABC中,∠C=90°,AB=5,AC=3,则下列等式正确的是()A.sinA= B.cosA= C.tanA= D.cosA=5.如图,阳光透过窗户洒落在地面上,已知窗户高,光亮区的顶端距离墙角,光亮区的底端距离墙角,则窗户的底端距离地面的高度()为()A. B. C. D.6.下列各组图形中,两个图形不一定是相似形的是()A.两个等边三角形 B.有一个角是的两个等腰三角形C.两个矩形 D.两个正方形7.下列一元二次方程有两个相等实数根的是()A.x2=0 B.x2=4 C.x2﹣2x﹣1=0 D.x2+1=08.关于x的一元二次方程ax2﹣4x+1=0有实数根,则整数a的最大值是()A.1 B.﹣4 C.3 D.49.小军旅行箱的密码是一个六位数,由于他忘记了密码的末位数字,则小军能一次打开该旅行箱的概率是()A. B. C. D.10.一个不透明的口袋中装有4个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球后不放回,再随机摸出一个小球,则两次摸出的小球标号之和等于6的概率为()A. B. C. D.11.下列图形中,既是轴对称图形,又是中心对称图形的个数有()A.1个 B.2个 C.3个 D.4个12.如图,舞台纵深为6米,要想获得最佳音响效果,主持人应站在舞台纵深所在线段的离舞台前沿较近的黄金分割点处,那么主持人站立的位置离舞台前沿较近的距离约为()A.1.1米 B.1.5米 C.1.9米 D.2.3米二、填空题(每题4分,共24分)13.如图,为了测量水塘边A、B两点之间的距离,在可以看到的A、B的点E处,取AE、BE延长线上的C、D两点,使得CD∥AB,若测得CD=5m,AD=15m,ED=3m,则A、B两点间的距离为_____m.14.如图,△ABC中,AE交BC于点D,∠C=∠E,AD=4,BC=8,BD:DC=5:3,则DE的长等于__________________.15.某物体对地面的压强P(Pa)与物体和地面的接触面积S(m2)成反比例函数关系(如图),当该物体与地面的接触面积为0.25m2时,该物体对地面的压强是______Pa.16.如果线段a、b、c、d满足,则=_________.17.如图,反比例函数的图象位于第一、三象限,且图象上的点与坐标轴围成的矩形面积为2,请你在第三象限的图象上取一个符合题意的点,并写出它的坐标______________.18.如图,在菱形c中,分别是边,对角线与边上的动点,连接,若,则的最小值是___.三、解答题(共78分)19.(8分)已知二次函数的顶点坐标为,且经过点,设二次函数图象与轴交于点,求点的坐标.20.(8分)如图,AB是⊙O的直径,BM切⊙O于点B,点P是⊙O上的一个动点(点P不与A,B两点重合),连接AP,过点O作OQ∥AP交BM于点Q,过点P作PE⊥AB于点C,交QO的延长线于点E,连接PQ,OP.(1)求证:△BOQ≌△POQ;(2)若直径AB的长为1.①当PE=时,四边形BOPQ为正方形;②当PE=时,四边形AEOP为菱形.21.(8分)已知关于的一元二次方程有两个不相等的实数根,.(1)求的最小整数值;(2)当时,求的值.22.(10分)4件同型号的产品中,有1件不合格品和3件合格品.(1)从这4件产品中随机抽取1件进行检测,求抽到的是不合格品的概率;(2)从这4件产品中随机抽取2件进行检测,求抽到的都是合格品的概率;(3)在这4件产品中加入x件合格品后,进行如下试验:随机抽取1件进行检测,然后放回,多次重复这个试验,通过大量重复试验后发现,抽到合格品的频率稳定在0.95,则可以推算出x的值大约是多少?23.(10分)如图,在△ABC中,∠ABC=60°,⊙O是△ABC的外接圆,P为CO的延长线上一点,且AP=AC.(1)求证:AP是⊙O的切线;(2)若PB为⊙O的切线,求证:△ABC是等边三角形.24.(10分)如图,已知AB是⊙O的直径,点C在⊙O上,点P是AB延长线上一点,∠BCP=∠A.(1)求证:直线PC是⊙O的切线;(2)若CA=CP,⊙O的半径为2,求CP的长.25.(12分)每年九月开学前后是文具盒的销售旺季,商场专门设置了文具盒专柜李经理记录了天的销售数量和销售单价,其中销售单价(元/个)与时间第天(为整数)的数量关系如图所示,日销量(个)与时间第天(为整数)的函数关系式为:直接写出与的函数关系式,并注明自变量的取值范围;设日销售额为(元),求(元)关于(天)的函数解析式;在这天中,哪一天销售额(元)达到最大,最大销售额是多少元;由于需要进货成本和人员工资等各种开支,如果每天的营业额低于元,文具盒专柜将亏损,直接写出哪几天文具盒专柜处于亏损状态26.先化简,再求值:,然后从0,1,2三个数中选择一个恰当的数代入求值.
参考答案一、选择题(每题4分,共48分)1、C【分析】分AB是腰长时,根据网格结构,找出一个小正方形与A、B顶点相对的顶点,连接即可得到等腰三角形,AB是底边时,根据线段垂直平分线上的点到线段两端点的距离相等,AB垂直平分线上的格点都可以作为点C,然后相加即可得解.【详解】解:如图,分情况讨论:①AB为等腰△ABC的底边时,符合条件的C点有4个;②AB为等腰△ABC其中的一条腰时,符合条件的C点有4个.故选C.【点睛】本题考查等腰三角形的判定,解题的关键是掌握等腰三角形的判定,分情况讨论解决.2、A【分析】利用相似三角形的性质:相似三角形的面积比等于相似比的平方得到,即可解决问题.【详解】∵,∴,∴,∴,故选:A.【点睛】本题考查相似三角形的判定和性质,解题的关键是熟练掌握基本知识,属于中考常考题型.3、B【分析】根据事件发生的可能性大小判断.【详解】解:A、水中捞月,是不可能事件;B、日出东方,是必然事件;C、守株待兔,是随机事件;D、拔苗助长,是不可能事件;故选B.【点睛】本题主要考查随机事件和必然事件的概念,解决本题的关键是要熟练掌握随机事件和必然事件的概念.4、B【分析】利用勾股数求出BC=4,根据锐角三角函数的定义,分别计算∠A的三角函数值即可.【详解】解:如图所示:∵∠C=90°,AB=5,AC=3,∴BC=4,∴sinA=,故A错误;cosA=,故B正确;tanA=,故C错误;cosA=,故D错误;故选:B.【点睛】本题考查了锐角三角函数的定义,勾股数的应用,掌握锐角三角函数的定义是解题的关键.5、A【分析】根据光沿直线传播的原理可知AE∥BD,则∽,根据相似三角形的对应边成比例即可解答.【详解】解:∵AE∥BD∴∽∴∵,,∴解得:经检验是分式方程的解.故选:A.【点睛】本题考查了相似三角形的判定及性质,解题关键是熟知:平行于三角形一边的直线和其他两边或延长线相交,所截得的三角形与原三角形相似.6、C【分析】根据相似图形的定义,以及等边三角形,等腰三角形,矩形,正方形的性质对各选项分析判断后利用排除法求解.【详解】解:A、两个等边三角形,对应边的比相等,角都是60°,相等,所以一定相似,故A正确;B、有一个角是100°的两个等腰三角形,100°的角只能是顶角,夹顶角的两边成比例,所以一定相似,故B正确;C、两个矩形,四个角都是直角,但四条边不一定对应成比例,不一定相似,故C错误;D、两个正方形,对应边的比相等,角都是90°,相等,所以一定相似,故D正确.故选:C.【点睛】本题考查了相似图形的判断,严格按照定义,对应边成比例,对应角相等进行判断即可,另外,熟悉等腰三角形,等边三角形,正方形的性质对解题也很关键.7、A【分析】根据一元二次方程根的判别式以及一元二次方程的解法,逐一判断选项,即可.【详解】A.x2=0,解得:x1=x2=0,故本选项符合题意;B.x2=4,解得:x1=2,x2=-2,故本选项不符合题意;C.x2﹣2x﹣1=0,,有两个不相等的根,故不符合题意;D.x2+1=0,方程无解,故不符合题意.故选A.【点睛】本题主要考查一元二次方程根的判别式,熟练掌握一元二次方程根的判别式的意义,是解题的关键.8、D【分析】根据根的判别式即可求出答案.【详解】由题意可知:△=16﹣4a≥0且a≠0,∴a≤4且a≠0,所以a的最大值为4,故选:D.【点睛】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法.9、A【解析】∵密码的末位数字共有10种可能(0、1、2、3、4、5、6、7、8、9、0都有可能),∴当他忘记了末位数字时,要一次能打开的概率是.故选A.10、A【解析】画树状图得出所有的情况,根据概率的求法计算概率即可.【详解】画树状图得:∵共有12种等可能的结果,两次摸出的小球标号之和等于6的有2种情况,∴两次摸出的小球标号之和等于6的概率故选A.【点睛】考查概率的计算,明确概率的意义是解题的关键,概率等于所求情况数与总情况数的比.11、B【分析】根据轴对称图形与中心对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴,如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.【详解】(1)是轴对称图形,不是中心对称图形.不符合题意;(2)不是轴对称图形,是中心对称图形,不符合题意;(3)是轴对称图形,也是中心对称图形,符合题意;(4)是轴对称图形,也是中心对称图形,符合题意;故选:B.【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形沿对称轴折叠后可重合;中心对称图形关键是要寻找对称中心,图形旋转180°后与原图重合.12、D【分析】根据黄金分割点的比例,求出距离即可.【详解】∵黄金分割点的比例为(米)∴主持人站立的位置离舞台前沿较近的距离约为(米)故答案为:D.【点睛】本题考查了黄金分割点的实际应用,掌握黄金分割点的比例是解题的关键.二、填空题(每题4分,共24分)13、20m【详解】∵CD∥AB,∴△ABE∽△DCE,∴,∵AD=15m,ED=3m,∴AE=AD-ED=12m,又∵CD=5m,∴,∴3AB=60,∴AB=20m.故答案为20m.14、【解析】试题分析:∵∠ADC=∠BDE,∠C=∠E,∴△ADC∽△BDE,∴,∵AD=4,BC=8,BD:DC=5:3,∴BD=5,DC=3,∴DE=.故选B.考点:相似三角形的判定与性质.15、1【分析】直接利用函数图象得出函数解析式,进而求出答案.【详解】设P=,把(0.5,2000)代入得:k=1000,故P=,当S=0.25时,P==1(Pa).故答案为:1.【点睛】此题主要考查了反比例函数的应用,正确求出函数解析会死是解题关键.16、【分析】设,,则,,代入计算即可求得答案.【详解】∵线段满足,∴设,,则,,∴,故答案为:.【点睛】本题考查了比例线段以及比例的性质,设出适当的未知数可使解题简便.17、满足的第三象限点均可,如(-1,-2)【分析】因为过双曲线上任意一点引x轴、y轴垂线,所得矩形面积S是个定值,即S=|k|.【详解】解:∵图象上的点与坐标轴围成的矩形面积为2,
∴|k|=2,
∴反比例函数y=的图象在一、三象限,k>0,
∴k=2,
∴此反比例函数的解析式为.∴第三象限点均可,可取:当x=-1时,y=-2综上所述,答案为:满足的第三象限点均可,如(-1,-2)【点睛】本题考查的是反比例函数系数k的几何意义,即过反比例函数图象上任意一点向两坐标轴引垂线,所得矩形的面积为|k|.18、【分析】作点Q关于BD对称的对称点Q’,连接PQ,根据两平行线之间垂线段最短,即有当E、P、Q’在同一直线上且时,的值最小,再利用菱形的面积公式,求出的最小值.【详解】作点Q关于BD对称的对称点Q’,连接PQ.∵四边形ABCD为菱形∴,∴当E、P、Q’在同一直线上时,的值最小∵两平行线之间垂线段最短∴当时,的值最小∵∴,∴∵∴解得∴的最小值是.故答案为:.【点睛】本题考查了菱形的综合应用题,掌握菱形的面积公式以及两平行线之间垂线段最短是解题的关键.三、解答题(共78分)19、点的坐标为:【分析】以顶点式设函数解析式,将点代入,求出二次函数解析式,再令,求得对应的值,则可得点的坐标.【详解】解:∵二次函数的顶点坐标为∴设其解析式为:.∵函数经过点,∴,∴,∴.令得:∴点的坐标为:.【点睛】此题考查的是求二次函数的解析式和根据解析式求点的坐标,掌握二次函数的顶点式是解决此题的关键.20、(1)见解析;(2)①6,②6.【分析】(1)根据切线的性质得∠OBQ=90°,再根据平行线的性质得∠APO=∠POQ,∠OAP=∠BOQ,加上∠OPA=∠OAP,则∠POQ=∠BOQ,于是根据“SAS”可判断△BOQ≌△POQ;(2)①利用△BOQ≌△POQ得到∠OPQ=∠OBQ=90°,由于OB=OP,所以当∠BOP=90°,四边形OPQB为正方形,此时点C、点E与点O重合,于是PE=PO=6;②根据菱形的判定,当OC=AC,PC=EC,四边形AEOP为菱形,则OC=OA=3,然后利用勾股定理计算出PC,从而得到PE的长.【详解】(1)证明:∵BM切⊙O于点B,∴OB⊥BQ,∴∠OBQ=90°,∵PA∥OQ,∴∠APO=∠POQ,∠OAP=∠BOQ,而OA=OP,∴∠OPA=∠OAP,∴∠POQ=∠BOQ,在△BOQ和△POQ中,∴△BOQ≌△POQ;(2)解:①∵△BOQ≌△POQ,∴∠OPQ=∠OBQ=90°,当∠BOP=90°,四边形OPQB为矩形,而OB=OP,则四边形OPQB为正方形,此时点C、点E与点O重合,PE=PO=AB=6;②∵PE⊥AB,∴当OC=AC,PC=EC,四边形AEOP为菱形,∵OC=OA=3,∴PC=,∴PE=2PC=6.故答案为6,6.【点睛】本题考查了切线的性质、全等三角形的判定与性质和菱形、正方形的判定方法;综合应用所学知识是解答本题的关键.21、(1)1;(2)【分析】(1)若一元二次方程有两不等实数根,则根的判别式△=b2-4ac>0,建立关于a的不等式,求出a的取值范围,进而得出a的最小整数值;(2)利用根与系数的关系得出x1+x2和x1x2,进而得出关于a的一元二次方程求出即可.【详解】(1)∵原方程有两个不相等的实数根,,,,∴,且,∴,故的最小整数值为1;(2)由题意:,∵,∴,∴,∴,整理,得:,解之,得:,满足,故的值为:.【点睛】本题考查了一元二次方程根的判别式以及根与系数的关系.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.22、(1)14;(2)1【分析】(1)用不合格品的数量除以总量即可求得抽到不合格品的概率;(2)利用独立事件同时发生的概率等于两个独立事件单独发生的概率的积即可计算;(3)根据频率估计出概率,利用概率公式列式计算即可求得x的值.【详解】解:(1)∵4件同型号的产品中,有1件不合格品,∴P(不合格品)=14(2)共有12种情况,抽到的都是合格品的情况有6种,P(抽到的都是合格品)=612=1(3)∵大量重复试验后发现,抽到合格品的频率稳定在0.95,∴抽到合格品的概率等于0.95,∴x+3x+4=0.95解得:x=1.【点睛】本题考查利用频率估计概率;概率公式;列表法与树状图法.23、(1)详见解析;(2)详见解析【分析】(1)连接OA,由等边三角形性质和圆周角定理可得∠AOC的度数,从而得到∠OCA,再由AP=AC得到∠PAC,从而算出∠PAO的度数;(2由切线长定理得PA,PB,从而说明PO垂直平分AB,得到CB=CA,再根据∠ABC=60°,从而判定等边三角形.【详解】解:(1)证明:连接.又是半径,是的切线.(2)证明:连接是的切线,是的垂直平分线.是等边三角形.【点睛】本题考查了外接圆的性质,垂直平分线的判定和性质,切线的性质,等腰三角形的性质,等边三角形的判定,此题难度适中,解题的关键是准确作出辅助线,从而进行证明.24、(1)见解析;(2)2【分析】(1)欲证明PC是⊙O的切线,只要证明OC⊥PC即可;(2)想办法证明∠P=30°即可解决问题.【详解】(1)∵OA=OC,∴∠A=∠ACO,∵∠PCB=∠A,∴∠ACO=∠PCB,∵AB是⊙O的直径,∴∠ACO+∠OCB=90°,∴∠PCB+∠OCB=90°,即OC⊥CP,∵OC是⊙O的半径,∴PC是⊙O的切线;(2)∵CP=CA,∴∠P=∠A,∴∠COB=2∠A=2∠P,∵∠OCP=90°,∴∠P=30°,∵OC=OA=2,∴OP=2OC=4,∴PC==2.【点睛】本题考查了切线的判定,解直角三角形,圆周角定理,正确的识别图形是解题的关键.25、(1)y=,(2)w=,在这15天中,第9天销售额达到最大,最大
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度室内外装修照明系统设计与安装合同3篇
- 2024年度智能家电维修工专项聘用合同协议3篇
- 2024年度区域独家授权代理合同3篇
- 2024全新二手房买卖合同模板下载3篇
- 2024年度科技创新项目债权转股权协议范本3篇
- 2024年度大型文艺演出项目合作协议3篇
- 2024年度大学生实习协议书(企业实习实训基地校企合作)3篇
- 2024年度创新型设备购置担保买卖合同3篇
- 2024年度企业年会演出委托合同样本3篇
- 2024年无抵押个人教育培训机构设备购置贷款合同范本3篇
- 水泥行业数字化转型服务方案
- 团委书记个人工作总结
- 高危多发性骨髓瘤诊断与治疗中国专家共识(2024年版)解读
- 旅游景区总经理招聘协议
- 《数据结构课程设计》赫夫曼编码实验报告
- 2025年新高考语文古诗文理解性默写(含新高考60篇)
- 公共关系理论与实务教程 教案-教学方案 项目8 公共关系专题活动管理
- 2024版房屋市政工程生产安全重大事故隐患判定标准内容解读
- 校园小品《我的未来不是梦》剧本
- 期末 (试题) -2024-2025学年人教PEP版(2024)英语三年级上册
- 药理学(浙江大学)智慧树知到期末考试答案章节答案2024年浙江大学
评论
0/150
提交评论