![工程基础力学 Ⅱ 动力学 课件 Chapter 3 Complex Motion of Particle、Chapter 4 Planar Motion of a Rigid Body_第1页](http://file4.renrendoc.com/view3/M00/0C/33/wKhkFmaJUA6AI91KAAB1zIYEDrw586.jpg)
![工程基础力学 Ⅱ 动力学 课件 Chapter 3 Complex Motion of Particle、Chapter 4 Planar Motion of a Rigid Body_第2页](http://file4.renrendoc.com/view3/M00/0C/33/wKhkFmaJUA6AI91KAAB1zIYEDrw5862.jpg)
![工程基础力学 Ⅱ 动力学 课件 Chapter 3 Complex Motion of Particle、Chapter 4 Planar Motion of a Rigid Body_第3页](http://file4.renrendoc.com/view3/M00/0C/33/wKhkFmaJUA6AI91KAAB1zIYEDrw5863.jpg)
![工程基础力学 Ⅱ 动力学 课件 Chapter 3 Complex Motion of Particle、Chapter 4 Planar Motion of a Rigid Body_第4页](http://file4.renrendoc.com/view3/M00/0C/33/wKhkFmaJUA6AI91KAAB1zIYEDrw5864.jpg)
![工程基础力学 Ⅱ 动力学 课件 Chapter 3 Complex Motion of Particle、Chapter 4 Planar Motion of a Rigid Body_第5页](http://file4.renrendoc.com/view3/M00/0C/33/wKhkFmaJUA6AI91KAAB1zIYEDrw5865.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Chapter3ComplexMotionofParticle(orPoint)
§3.1Basicconceptofcomplexmotionofparticle
§
3.2Velocitycompositiontheoremofparticle§
3.3Accelerationcompositiontheoremwhenthetransportmotionistranslation§
3.4Accelerationcompositiontheoremwhenthetransportmotionisrotation
Maincontents1.
Whatiscomplexmotionofparticle?Motionisrelative.Amotionrelativetoareferenceobjectcanbecomposedofseveralsimplemotionsrelativetootherreferenceobjects.Themotioniscalled
complexmotion.2.ProblemstosolvebytheoryofcomplexmotionofparticleAcomplexmotioncanbedecomposedintotwosimplemotions.Thevaluesofcomplexmotioncanbecomposedbythoseoftwosimplemotions.Therelationsofthemotionofeverycomponentinthemovingmechanism.Therelationoftwomovingobjectswithoutdirectiveconnection.(1)AmovingpointApointintheresearchingobject.(2)Tworeferencesystems(3)Three
kindsof
motionsApoint,tworeferencesystems,andthreekindsofmotionsFixedreferencesystem:Areferencesystemfixedtotheearthground.Movingreferencesystem:
Areferencesystemfixedtoamovingobjectrelativetotheearthground.Absolutemotion:Motionofthemovingpointrelativetothefixedreferencesystem.Relativemotion:
Motionofthemovingpointrelativetothemovingreferencesystem.Transportmotion:Motionofthemovingreferencesystemrelativetothefixedreferencesystem.
3.1BasicconceptofcomplexmotionofparticleAbsolutemotionRelativemotionTransportmotionBothofabsolutemotionandrelativemotionaremotionsofaparticle.Transportmotionismotionofreferenceobject,actuallymotionofarigidbody.
3.1BasicconceptofcomplexmotionofparticleCorrespondingtoabsolutemotion:AbsolutetrajectoryAbsolute
velocityAbsoluteaccelerationCorrespondingtorelativemotion:
RelativetrajectoryRelativevelocityRelativeaccelerationThereisn’ttrajectoryfortransportmotion,becauseitisn’taparticle,butarigidbody.Correspondingtotransportmotion:TransportvelocityTransportaccelerationTransportvelocity
and
transportacceleration
arethevelocityandaccelerationofthepointinthemovingreferencesystemcoincidingwiththemovingpoint(transportpoint)
relativetothefixedreferencesystematanyinstantoftime.
3.1BasicconceptofcomplexmotionofparticleExample
3-1Crankrockermechanism,thecrankOAisconnectedtothesleevebypinA,andthesleeveissetontherockerO1B.WhenthecrankrotatesaroundtheOaxiswithangularvelocityω,therockerO1BisdriventoswingaroundtheO1axisthroughthesleeve.AnalyzethemotionoftheApoint.
3.1BasicconceptofcomplexmotionofparticleSolution:Movingreferencesystem-O1x'y',fixedtorockingbarO1B.2.Motionanalysis.Movingpoint-pin
A
onthesleeve.y'x'1.Choosethemovingpoint,movingreferencesystemandfixedreferencesystem.Fixedreferencesystem-Fixedtotheground.Absolutemotion-CircularmotionwiththecentreO.Relativemotion-ThestraightlinemotionalongO1B.Transportmotion-RotationofrockingbarabouttheaxisO1.
3.1BasicconceptofcomplexmotionofparticleHowtoselectthemovingpointandmovingsystem1.Themovingsystemcanberegardedasaninfiniterigidbody,andthebasicmotionoftherigidbodyistranslationalandfixed-axisrotation.Therefore,themovingsystemisgenerallytakenasthecoordinatesystemoftranslationalmotionorfixed-axisrotation.2.Themovingpointandthemovingreferencecannotbechosenonthesameobject,otherwisetherelativemotionofthemovingpointwithrespecttothemovingreferencewilldisappear.3.Themovingpointmustalwaysbethesamepointinthesystem,andstudyitsmotionatdifferentmoments.Itisnotallowedtotakeapointatoneinstantandanotherpointasthemovingpointatthenextinstant.1.TheoremAtanyinstantoftime,theabsolutevelocityofamovingpointisequaltothegeometricsumofitsrelativevelocityandtransportvelocity.Thisisthe
velocitycompositiontheoremofpoint.
Theabsolutevelocityofamovingpointcanbedeterminedbythediagonallineoftheparallelogramcomposedbyitstransportvelocityandrelativevelocity.
Thisisthe
parallelogramofvelocity.
3.2Velocitycompositiontheoremofparticle
moveto
2.Provement
3.2VelocitycompositiontheoremofparticleExample
3-2
Thequick-returnmechanismofplanerisshowninthefigure.TheendAofacrankOAisarticulatedwithaslideblock.ThecrankOArotatesaroundthefixedaxisOwiththeuniformangularvelocityω.Theslideblockslidesontherockingbar,whichisdriventoswingaboutthefixedaxisO1.ThelengthofthecrankOA=r,OO1=l.Findtheangularvelocityω1oftherockingbarwhenthecrankmovestothehorizontalposition.
3.2VelocitycompositiontheoremofparticleSolution:Movingreferencesystem-O1x'y',fixedtorockingbarO1B.2.Motionanalysis.Movingpoint-pin
A
onthesleeve.y'x'1.Choosethemovingpoint,movingreferencesystemandfixedreferencesystem.Fixedreferencesystem-Fixedtotheground.Absolutemotion-CircularmotionwiththecentreO.Relativemotion-ThestraightlinemotionalongO1B.Transportmotion-RotationofrockingbarabouttheaxisO1.
3.2Velocitycompositiontheoremofparticle3.VelocityanalysisvavevrAbsolutevelocityva:va=OA·ω
=rω,
Direction:verticaltoOA,plumbedupwardsTransportvelocity
ve:ve
istheunknownquantity,andneedtobesolvedDirection:verticaltoO1BRelativevelocityvr:themagnitudeisunknownDirection:alongtherockingbarO1B
Accordingtothevelocitycompositiontheoremofapoint
3.2Velocitycompositiontheoremofparticle∵∴Supposetheangularvelocityoftherockingbaratthemomentisω1,yieldsSovavevr
3.2Velocitycompositiontheoremofparticle1.Relativeandabsolutederivativeofvector●MOxyzisafixedcoordinatesystem,andO1x1y1z1isamotioncoordinatesystem,theradiusvectorofthemovingpointMinthemotionsystemisWetakethetimederivativeinthefixedsystemtoobtainThisistheabsoluterateofchangeofthevectorr1Takethederivativeofr1withrespecttotimeinthemotionsystemtoobtainThisistherelativerateofchangeofthevectorr13.3Accelerationcompositiontheoremwhenthetransportmotionistranslation2.Threekindsofaccelerations(1)Absoluteacceleration(2)Relativeacceleration3.3Accelerationcompositiontheoremwhenthetransportmotionistranslation●M2.Threekindsofaccelerations(3)Transportacceleration3.3Accelerationcompositiontheoremwhenthetransportmotionistranslation●M3.AccelerationcompositiontheoremWhenthemotionsystemistranslatingmotion,andi1,j1,k1
areconstantvectors,andtheirmagnitudesanddirectionsareconstant,sotheirtimederivativesareallzero,wecangetAccelerationcompositiontheoremwhenthetransportmotionistranslation3.3Accelerationcompositiontheoremwhenthetransportmotionistranslation●MExample
3-3
Aplanemechanismshowninthefigure,thecrankOA=r,rotatesuniformlywithangularvelocityω0.SleeveAcanslidsalongthebarBC.BC=DE,且BD=CE=l.FindtheangularvelocityandangularaccelerationofBDatthemomentshowninthefigure.ABCDEOω0ωαSolution:Choosethemovingpoint,movingreferencesystemandfixedreferencesystemMovingreferencesystem-Cx´y´,fixedtothebar
BC.2.MotionanalysisTransportmotion-translationMovingpoint-slideblock
A.Fixedreferencesystem-
fixedtothebase.ABCDEOω0ωαx'y'Absolutemotion-CircularmotionwithcentreORelativemotion-straightlinemotionalongBCABCDEOω0ωαvBvevavr3.VelocityanalysisyieldsSotheangularvelocityof
BDAbsolute
velocity
va:va=ω0r,verticalto
OA
downwards.
Transportvelocity
ve:ve=
vB,verticalto
BDrightdownwands.
Relativevelocity
vr:magnitudeunknown,along
BCleftEmployingthetheoremofcompositionofvelocities4.AccelerationanalysisAbsoluteacceleration
aa:aa=ωor
,along
OA,pointtoOTransportaccelerationae:tangentialcomponentaet:sametoaBt,magnitude
unknown,verticaltoDB,
supposedownwardsRelativeacceleration
ar:magnitude
unknown,along
BC,
supposetoleftnormalcomponentaen:aen
=aBn=
ω2l
=ωo2r2
/l,alongDB,
pointtoDaaarABCDEOω0ωα
Projecttoaxisy,
yieldsyieldsApplyingthecompositiontheoremofaccelerationsSotheangularaccelerationof
BD:
aaarABCDEOωαyAfixedcoordinatesystemOxyzandmotioncoordinatesystemOx1y1z1,letthemovingpointMmoveinthemotionsystemOx1y1z1,andthemotionsystemOx1y1z1rotatesaboutthez-axisofthefixedsystemwithangularvelocityωandangularaccelerationε●MBasedonthepreviousproofofthevelocitycompositiontheorem,wehave
TherelativevelocityandrelativeaccelerationofthemovingpointM3.4AccelerationcompositiontheoremwhenthetransportmotionisrotationAndthen
Basedonthevelocitycompositiontheorem:AccordingtothePoissonformula:3.4Accelerationcompositiontheoremwhenthetransportmotionisrotation
Coriolisacceleration:Thisistheaccelerationcompositiontheoremwhenthetransportmotionisrotation.3.4AccelerationcompositiontheoremwhenthetransportmotionisrotationExample
3-4Thequick-returnmechanismofplanerisshowninthefigure.TheendAofacrankOAisarticulatedwithaslideblock.ThecrankOArotatesaroundthefixedaxisOwiththeuniformangularvelocityω.Theslideblockslidesontherockingbar,whichisdriventoswingaboutthefixedaxisO1.ThelengthofthecrankOA=r,OO1=l.Findtheangularaccelerationα1oftherockingbarwhenthecrankmovestothehorizontalposition.
Basedonthe
velocityanalysisobtainedfromlastclass,weknowthatSolution:Choosethemovingpoint,movingreferencesystemandfixedreferencesystem.Movingreferencesystem-O1x1y1,fixedtorockingbarO1B.Movingpoint-slideblock
A.vavevry1x1Fixedreferencesystem-Fixedtothe
base2.AccelerationanalysisAbsoluteacceleration
aa:
aa
=ω2r
,along
OA,pointto
O.Relative
acceleration
ar:magnitude
is
unknown
,suppose
it
is
along
O1B
upwards.
Tangential
component
aet:magnitude
is
unknown,
vertical
to
O1B,supposerightdownwardsTransport
acceleration:Normal
component
:
along
O1A,point
to
O1Coriolis
acceleration
aC:verticaltoO1B,showninthefigurex'y'O1Oφωω1ABaaaraCProjectitto
O1x'yieldsTheangularaccelerationofrockingbar:α1Applyingtheaccelerationcompositiontheoremx'y'O1Oφωω1ABaaaraCor
TheEnd
Chapter4
PlanarMotionofaRigidBody§
4.1Basicconceptanddecompositionofrigidbodyplanarmotion
Maincontents§4.2
Velocityofanypointinaplanarmotion§4.3
Accelerationofanypointinaplanarmotion1.Whatisplanarmotionofarigidbody?Thedistancebetweenanypointinarigidbodyandafixedplanealwayskeepsunchangedduringitsmotion.Thismotionofrigidbodyiscalled
planarmotionofarigidbody.4.1Basicconceptanddecompositionofrigidbodyplanarmotion2.SimplificationofaplanarmotionTheplanarmotionofarigidbodycanbesimplifiedtoamotionofaplanegraphintheplaneitselfwithoutconsideringitsthickness.
(a)Connectingrodmotion(b)Simplificationofconnectingrodmotion4.1Basicconceptanddecompositionofrigidbodyplanarmotion3.EquationsofplanarmotionSTodeterminethemotionofaplanegraph,choosethefixedreferencesystemOxy,anarbitrarypointO'intheplanegraphS,anarbitrarylinesegmentO'M.Todeterminetheplanarmotionofarigidbody,onlythepositionofthelinesegmentO'Minthisgraphisneededtobedetermined.EquationsofplanarmotionAplanemotioncanberegardedasthecompositionofa
translation
androtation.4.1Basicconceptanddecompositionofrigidbodyplanarmotion4.Planarmotioncanbedecomposedintotranslationandrotation
Aplanemotionofarigidbodycanbedecomposedintoa
translationwithabasicpointanda
rotation
aboutanaxisthatpassesthroughthebasicpoint.Thevelocityandaccelerationofthe
translation
withabasicpoint
intheplanegraphdependson
theselectionof
thebasicpoint,however,theangularvelocityandaccelerationoftherotationabouttheselectedbasicpoint
doesn’tdependon
thechoiceofthebasicpoint.4.1BasicconceptanddecompositionofrigidbodyplanarmotionAThevelocityofpointAintheplanegraphSis,andtherotationalvelocityoftheplanegraphis.SelectAasthebasicpoint;ThemovingreferencesystemattachedtopointA;Thetransportmotionistranslationwiththebasicpoint
A;Therelativemotionisrotationaboutthebasicpoint
A.(1)Basicpointmethod
·BDeterminethevelocityofpointBintheplanegraph.4.2VelocityofanypointinaplanarmotionABTheorem:Forplanarmotionofarigidbody,thevelocityofanypointinthegraphcanbeobtainedasthevectorsumofthevelocityofthebasicpointandtherelativerotationalvelocitywithrespecttothebasicpoint.4.2Velocityofanypointinaplanarmotion
isverticaltothelinkofABallthetime,sotheprojectionofonABisvanish.Thevelocityprojectiontheorem:thevelocityprojectionsofanytwopointinaplanegraphonthelinelinkingthesetwopointsareidentical.(2)VelocityprojectiontheoremAB4.2Velocityofanypointinaplanarmotiona.Background
Ifapointwhosevelocityiszeroisselectedasthebasicpoint,theprocessoffindingthevelocityofanypointwillbegreatlysimplified.Therefore,itisnaturaltoaskifsuchapointexistsinanyinstant.Ifitdoesexist,howtofindsuchapoint?b.InstantaneouscenterofvelocityAtanyinstant,itmustexistasolepointwhosevelocityiszerointheplanegraphoritsexpandingarea,whichiscalledtheinstantaneousvelocitycenterofthisplanegraphatthisinstant.Foraplanegraph,itsinstantaneousvelocitycenteralwaysexistsuniquely.
(3)Instantaneouscenterofvelocitymethod4.2Velocityofanypointinaplanarmotionc.InstantaneouscenterofvelocitymethodConsideraplanegraph.TheinstantaneousvelocitycenterisP,andtheangularvelocityoftheplanegraphis.SelectinstantaneousvelocitycenterPisabasicpoint,thevelocityofanarbitrarypointAintheplanegraph:4.2Velocityofanypointinaplanarmotiond.MethodstodeterminetheinstantaneousvelocitycenterPA(1)Whenthevelocityofapointandtheangularvelocity
oftheplanegraphareknown,theinstantaneousvelocitycenter(pointP)canbedetermined,
pointPisinthedirectionofthelineformedbyrotatingthethrough90ºinthedirectionof
aroundpointA.4.2Velocityofanypointinaplanarmotion(2)Whenaplanegraphrollsalongafixedsurfacewithoutslipping,thecontactpointPbetweenthegraphandthefixedsurfacewillbetheinstantaneousvelocitycenter.
(3)WhenthedirectionsofthevelocitiesattwopointsAandBinagraphareknown,andisnotparallelto,drawlinesfromAandBperpendiculartorespectively,andthecrosspointPofthesetwolineswillbetheinstantaneousvelocitycenter.ABP4.2Velocityofanypointinaplanarmotion(4)WhenthevelocitiesoftwopointsAandBaregivenatanyinstant,and.Therearethreecases:ABP
Whenandpointtothesamedirection,but.DrawtheextensionlineofAB,thelinkinglineoftheendingsofand,thecrosspointofthesetwolineswillbetheinstantaneousvelocitycenter.Therotationdirectionofcanbedetermined,anditsmagnitudeis:◆ω
◆Whenandhaveoppositedirections,drawthelinkinglineoftheendingsofand,andthelineconnectingAB.Thecrosspointofthesetwolineswillbetheinstantaneousvelocitycenter.Therotationdirectionofcanbedetermined,anditsmagnitudeis:
ω4.2VelocityofanypointinaplanarmotionBPAB(5)ThevelocitiesoftwopointsAandBpointtothesamedirectionatanyinstant,,,buttheyarenotperpendiculartolineAB.Inthiscase,theinstantaneousvelocitycenterisindefinitelyfaraway,andtheangularvelocity
=0,i.e.allpointinthefigurehavethesamevelocityatthisinstantoftime.Suchamotioniscalledinstantaneoustranslation,buttheiraccelerationsarenotequal.
When,
theinstantaneousvelocitycenterisindefinitelyfaraway.Theplanegraphhasinstantaneoustranslation,=0,allpointsinthegraphhavethesamevelocityatthisinstantoftime,buttheiraccelerationsarenotequal.◆ω4.2VelocityofanypointinaplanarmotionAABAAttheinstant,theangularvelocityofthegraphis,angularaccelerationis,accelerationofapointAis
.DeterminetheaccelerationofanarbitrarypointBinthegraph.·
4.3
AccelerationofanypointinaplanarmotionBA
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- bimco定期租船合同范本
- 个人转让门市合同范本
- 公墓安保合同范本
- 乳品代加工合同范本
- 2005建筑合同范本
- 农机联合生产合同范本
- 代理办证合同范本
- 人力资源介绍合同范本
- 乙方不执行合同范本
- 农村家具配送合同范本
- 2025年上半年赣州市于都县招聘城管协管员易考易错模拟试题(共500题)试卷后附参考答案
- 中储棉直属企业招聘笔试真题2024
- 2024年长沙卫生职业学院高职单招职业技能测验历年参考题库(频考版)含答案解析
- 2025届高考数学一轮专题重组卷第一部分专题十四立体几何综合文含解析
- 中考数学总复习第一章第3课时二次根式课件
- 福建省泉州市南安市2024-2025学年九年级上学期期末考试语文试题(无答案)
- 2025年中国电子烟行业发展前景与投资战略规划分析报告
- 无人机法律法规与安全飞行 第2版空域管理
- 我的小学生活
- 医疗器材申请物价流程
- 提高瓦屋面太阳能板安装一次验收合格率
评论
0/150
提交评论