版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.在平面直角坐标系中,的直径为10,若圆心为坐标原点,则点与的位置关系是()A.点在上 B.点在外 C.点在内 D.无法确定2.若锐角α满足cosα<且tanα<,则α的范围是()A.30°<α<45° B.45°<α<60°C.60°<α<90° D.30°<α<60°3.若函数y=(m2-3m+2)x|m|-3是反比例函数,则m的值是()A.1 B.-2 C.±2 D.24.如图,AB为的直径,点C在上,若AB=4,,则O到AC的距离为()A.1 B.2 C. D.5.在△ABC中,AB=AC=13,BC=24,则tanB等于()A. B. C. D.6.下列事件中,属于随机事件的是().A.13名同学中至少有两名同学的生日在同一个月B.在只有白球的盒子里摸到黑球C.经过交通信号灯的路口遇到红灯D.用长为,,的三条线段能围成一个边长分别为,,的三角形7.若将抛物线y=5x2先向右平移2个单位,再向上平移1个单位,得到的新抛物线的表达式为()A.y=5(x﹣2)2+1 B.y=5(x+2)2+1 C.y=5(x﹣2)2﹣1 D.y=5(x+2)2﹣18.剪纸是中国特有的民间艺术.在如图所示的四个剪纸图案中.既是轴对称图形又是中心对称图形的是()A. B. C. D.9.如图,在正方形网格中,线段A′B′是线段AB绕某点顺时针旋转一定角度所得,点A′与点A是对应点,则这个旋转的角度大小可能是()A.45° B.60° C.90° D.135°10.解方程2(5x-1)2=3(5x-1)的最适当的方法是()A.直接开平方法. B.配方法 C.公式法 D.分解因式法二、填空题(每小题3分,共24分)11.如图,一渔船由西往东航行,在A点测得海岛C位于北偏东60°的方向,前进20海里到达B点,此时,测得海岛C位于北偏东30°的方向,则海岛C到航线AB的距离CD等于海里.12.如图,AB为⊙O的直径,C,D是⊙O上两点,若∠ABC=50°,则∠D的度数为______.13.计算:__________.14.如图,一段抛物线:记为,它与轴交于两点,;将绕旋转得到,交轴于;将绕旋转得到,交轴于;如此进行下去,直至得到,若点在第段抛物线上,则___________.15.已知⊙O的半径为,圆心O到直线L的距离为,则直线L与⊙O的位置关系是___________.16.如图,在中,,,以为直角边、为直角顶点作等腰直角三角形,则______.17.有4根细木棒,长度分别为2cm、3cm、4cm、5cm,从中任选3根,恰好能搭成一个三角形的概率是__________.18.某市为提倡居民节约用水,自今年1月1日起调整居民用水价格.图中、分别表示去年、今年水费(元)与用水量()之间的关系.小雨家去年用水量为150,若今年用水量与去年相同,水费将比去年多_____元.三、解答题(共66分)19.(10分)解不等式组并求出最大整数解.20.(6分)如图是某学校体育看台侧面的示意图,看台的坡比为,看台高度为米,从顶棚的处看处的仰角,距离为米,处到观众区底端处的水平距离为米.(,,结果精确到米)(1)求的长;(2)求的长.21.(6分)如图,点D是AC上一点,BE//AC,AE分别交BD、BC于点F、G,若∠1=∠2,线段BF、FG、FE之间有怎样的关系?请说明理由.22.(8分)定义:我们知道,四边形的一条对角线把这个四边形分成了两个三角形,如果这两个三角形相似(不全等),我们就把这条对角线叫做这个四边形的“相似对角线”.理解:(1)如图1,已知Rt△ABC在正方形网格中,请你只用无刻度的直尺在网格中找到一点D,使四边形ABCD是以AC为“相似对角线”的四边形(画出1个即可);(2)如图2,在四边形ABCD中,,对角线BD平分∠ABC.求证:BD是四边形ABCD的“相似对角线”;运用:(3)如图3,已知FH是四边形EFGH的“相似对角线”,∠EFH=∠HFG=.连接EG,若△EFG的面积为,求FH的长.23.(8分)城市规划期间,欲拆除一电线杆AB,已知距电线杆AB水平距离14m的D处有一大坝,背水坡CD的坡度i=2:1,坝高CF为2m,在坝顶C处测得杆顶A的仰角为30°,D、E之间是宽为2m的人行道.试问:在拆除电线杆AB时,为确保行人安全,是否需要将此人行道封上?请说明理由(在地面上,以点B为圆心,以AB长为半径的圆形区域为危险区域.)(≈1.732,≈1.414)24.(8分)已知关于的方程(1)当m取何值时,方程有两个实数根;(2)为m选取一个合适的整数,使方程有两个不相等的实数根,并求出这两个实数根.25.(10分)如图有A、B两个大小均匀的转盘,其中A转盘被分成3等份,B转盘被分成4等份,并在每一份内标上数字.小明和小红同时各转动其中一个转盘,转盘停止后(当指针指在边界线时视为无效,重转),若将A转盘指针指向的数字记作一次函数表达式中的k,将B转盘指针指向的数字记作一次函数表达式中的b.(1)请用列表或画树状图的方法写出所有的可能;(2)求一次函数y=kx+b的图象经过一、二、四象限的概率.26.(10分)如图1,AB是⊙O的直径,过⊙O上一点C作直线l,AD⊥l于点D.(1)连接AC、BC,若∠DAC=∠BAC,求证:直线l是⊙O的切线;(1)将图1的直线l向上平移,使得直线l与⊙O交于C、E两点,连接AC、AE、BE,得到图1.若∠DAC=45°,AD=1cm,CE=4cm,求图1中阴影部分(弓形)的面积.
参考答案一、选择题(每小题3分,共30分)1、B【分析】求出P点到圆心的距离,即OP长,与半径长度5作比较即可作出判断.【详解】解:∵,∴OP=,∵的直径为10,∴r=5,∵OP>5,∴点P在外.故选:B.【点睛】本题考查点和直线的位置关系,当d>r时点在圆外,当d=r时,点在圆上,当d<r时,点在圆内,解题关键是根据点到圆心的距离和半径的关系判断.2、B【详解】∵α是锐角,∴cosα>0,∵cosα<,∴0<cosα<,又∵cos90°=0,cos45°=,∴45°<α<90°;∵α是锐角,∴tanα>0,∵tanα<,∴0<tanα<,又∵tan0°=0,tan60°=,0<α<60°;故45°<α<60°.故选B.【点睛】本题主要考查了余弦函数、正切函数的增减性与特殊角的余弦函数、正切函数值,熟记特殊角的三角函数值和了解锐角三角函数的增减性是解题的关键3、B【解析】根据反比例函数的定义,列出方程求解即可.【详解】解:由题意得,|m|-3=-1,
解得m=±1,
当m=1时,m1-3m+1=11-3×1+1=2,
当m=-1时,m1-3m+1=(-1)1-3×(-1)+1=4+6+1=11,
∴m的值是-1.
故选:B.【点睛】本题考查了反比例函数的定义,熟记一般式y=(k≠2)是解题的关键,要注意比例系数不等于2.4、C【分析】连接OC,BC,过点O作OD⊥AC于D,可得OD//BC,利用平行线段成比例可知和AD=,利用勾股定理,可得,列出方程,即可求出OD的长.【详解】解:连接OC,BC,过点O作OD⊥AC于D,∴∠ADO=90°,∵AB为的直径,AB=4,,∴∠ACB=90°,OA=OC=,∴OD//BC,∴,∴AD=,在中,,∴,解得OD=;故选C.【点睛】本题主要考查了平行线段成比例,勾股定理,掌握平行线段成比例,勾股定理是解题的关键.5、B【解析】如图,等腰△ABC中,AB=AC=13,BC=24,过A作AD⊥BC于D,则BD=12,在Rt△ABD中,AB=13,BD=12,则,AD=,故tanB=.故选B.【点睛】考查的是锐角三角函数的定义、等腰三角形的性质及勾股定理.6、C【分析】根据随机事件,必然事件,不可能事件的定义对每一选项进行判断即可.【详解】A、必然事件,不符合题意;B、不可能事件,不符合题意;C、随机事件,符合题意;D、不可能事件,不符合题意;故选C.【点睛】本题考查随机事件,正确理解随机事件,必然事件,不可能事件的定义是解题的关键.7、A【解析】试题解析:将抛物线向右平移2个单位,再向上平移1个单位,得到的抛物线的解析式是故选A.点睛:二次函数图像的平移规律:左加右减,上加下减.8、C【解析】根据轴对称图形的定义沿一条直线对折后,直线两旁部分完全重合的图形是轴对称图形,以及中心对称图形的定义分别判断即可得出答案.【详解】A.此图形沿一条直线对折后不能够完全重合,∴此图形不是轴对称图形,不是中心对称图形,故此选项错误;B.此图形沿一条直线对折后能够完全重合,∴此图形不是轴对称图形,不是中心对称图形,故此选项错误。C.此图形沿一条直线对折后能够完全重合,∴此图形是轴对称图形,旋转180∘能与原图形重合,是中心对称图形,故此选项正确;D.此图形沿一条直线对折后能够完全重合,旋转180°不能与原图形重合,∴此图形是轴对称图形,不是中心对称图形,故此选项错误。故选C【点睛】此题考查轴对称图形和中心对称图形,难度不大9、C【分析】如图:连接AA′,BB′,作线段AA′,BB′的垂直平分线交点为O,点O即为旋转中心.连接OA,OB′,∠AOA′即为旋转角.【详解】解:如图:连接AA′,BB′,作线段AA′,BB′的垂直平分线交点为O,点O即为旋转中心.连接OA,OB′,∠AOA′即为旋转角,∴旋转角为90°故选:C.【点睛】本题考查了图形的旋转,掌握作图的基本步骤是解题的关键10、D【详解】解:方程可化为[2(5x-1)-3](5x-1)=0,即(10x-5)(5x-1)=0,根据分析可知分解因式法最为合适.故选D.二、填空题(每小题3分,共24分)11、10【详解】试题分析:BD设为x,因为C位于北偏东30°,所以∠BCD=30°在RT△BCD中,BD=x,CD=3x又∵∠CAD=30°,在RT△ADC中,AB=20,AD=20+x,又∵△ADC∽△CDB,所以ADCD即:(3x)2=x(20+x),求出x=10,故考点:1、等腰三角形;2、三角函数12、40°.【解析】根据直径所对的圆心角是直角,然后根据直角三角形的两锐角互余求得∠A的度数,最后根据同弧所对的圆周角相等即可求解.【详解】∵AB是圆的直径,∴∠ACB=90°,∴∠A=90°-∠ABC=90°-50°=40°.∴∠D=∠A=40°.故答案为:40°.【点睛】本题考查了圆周角定理,直径所对的圆周角是直角以及同弧所对的圆周角相等,理解定理是关键.13、【分析】先计算根号、负指数和sin30°,再运用实数的加减法运算法则计算即可得出答案.【详解】原式=,故答案为.【点睛】本题考查的是实数的运算,中考必考题型,需要熟练掌握实数的运算法则.14、-1【分析】将这段抛物线C1通过配方法求出顶点坐标及抛物线与x轴的交点,由旋转的性质可以知道C1与C2的顶点到x轴的距离相等,且OA1=A1A2,照此类推可以推导知道点P(11,m)为抛物线C6的顶点,从而得到结果.【详解】∵y=−x(x−2)(0≤x≤2),∴配方可得y=−(x−1)2+1(0≤x≤2),∴顶点坐标为(1,1),∴A1坐标为(2,0)∵C2由C1旋转得到,∴OA1=A1A2,即C2顶点坐标为(3,−1),A2(4,0);照此类推可得,C3顶点坐标为(5,1),A3(6,0);C4顶点坐标为(7,−1),A4(8,0);C5顶点坐标为(9,1),A5(10,0);C6顶点坐标为(11,−1),A6(12,0);∴m=−1.故答案为:-1.【点睛】本题考查了二次函数的性质及旋转的性质,解题的关键是求出抛物线的顶点坐标,学会从一般到特殊的探究方法,属于中考常考题型.15、相交【分析】先根据题意判断出直线与圆的位置关系即可得出结论.【详解】∵⊙O的半径为6cm,圆心O到直线l的距离为5cm,6cm>5cm,∴直线l与⊙O相交,故答案为:相交.【点睛】本题考查的是直线与圆的位置关系,熟知设⊙O的半径为r,圆心O到直线l的距离为d,当d<r时,直线与圆相交是解答此题的关键.16、1【分析】由于AD=AB,∠CAD=90°,则可将△ABD绕点A逆时针旋转90°得△ABE,如图,根据旋转的性质得∠CAE=90°,AC=AE,BE=CD,于是可判断△ACE为等腰直角三角形,则∠ACE=45°,CE=AC=5,易得∠BCE=90°,然后在Rt△CAE中利用勾股定理计算出BE=1,从而得到CD=1.【详解】解:∵△ADB为等腰直角三角形,∴AD=AB,∠BAD=90°,将△ACD绕点A顺时针旋转90°得△AEB,如图,∴∠CAE=90°,AC=AE,CD=BE,∴△ACE为等腰直角三角形,∴∠ACE=45°,,∵∠ACB=45°,∴∠BCE=45°+45°=90°,在Rt△BCE中,,∴CD=1.故答案为1.【点睛】本题考查了旋转的性质,等腰直角三角形的判定与性质,以及勾股定理等知识.旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.解决本题的关键的利用旋转得到直角三角形CBE.17、【分析】根据题意,使用列举法可得从有4根细木棒中任取3根的总共情况数目以及能搭成一个三角形的情况数目,根据概率的计算方法,计算可得答案.【详解】根据题意,从有4根细木棒中任取3根,有2、3、4;3、4、5;2、3、5;2、4、5,共4种取法,而能搭成一个三角形的有2、3、4;3、4、5,2、4、5,三种,得P=.故其概率为:.【点睛】本题考查概率的计算方法,使用列举法解题时,注意按一定顺序,做到不重不漏.用到的知识点为:概率=所求情况数与总情况数之比.18、1.【分析】根据函数图象中的数据可以求得时,对应的函数解析式,从而可以求得时对应的函数值,由的的图象可以求得时对应的函数值,从而可以计算出题目中所求问题的答案,本题得以解决.【详解】设当时,对应的函数解析式为,,得,即当时,对应的函数解析式为,当时,,由图象可知,去年的水价是(元/),故小雨家去年用水量为150,需要缴费:(元),(元),即小雨家去年用水量为150,若今年用水量与去年相同,水费将比去年多1元,故答案为:1.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.三、解答题(共66分)19、最大整数解为【分析】先求出不等式组的解集,根据不等式组的解集求出即可.【详解】解:由①得:由②得:不等式组的解为:所以满足范围的最大整数解为【点睛】本题考查了解一元一次不等式组和一元一次不等式组的整数解的应用,关键是求出不等式组的解集.20、(1)24;(2)25.6【分析】(1)根据坡比=垂直高度比水平距离代入求值即可.(2)先过D做EF的垂线,形成直角三角形,再根据锐角三角函数来求.【详解】解:(1)的坡比为,(2)过点作交于点,在中,,,,【点睛】本题考查了坡比公式和锐角三角函数,锐角三角函数必须在直角三角形中求解.21、BF2=FG·EF.【解析】由题意根据BE∥AC,可得∠1=∠E,然后有∠1=∠2,可得∠2=∠E,又由∠GFB=∠BFE,可得出△BFG∽△EFB,最后可得出BF2=FG•FE.【详解】解:BF2=FG·EF.证明:∵BE∥AC,∴∠1=∠E.∵∠1=∠2,∴∠2=∠E.又∵∠BFG=∠EFB,∴△BFG∽△EFB.∴,∴BF2=FG·EF.【点睛】本题考查相似三角形的判定与性质,解答本题的关键是根据BE∥AC,得出∠1=∠E,进而判定△BFG∽△EFB.22、(1)详见解析;(2)详见解析;(3)4【分析】(1)根据“相似对角线”的定义,利用方格纸的特点可找到D点的位置.(2)通过导出对应角相等证出∽,根据四边形ABCD的“相似对角线”的定义即可得出BD是四边形ABCD的“相似对角线”.(3)根据四边形“相似对角线”的定义,得出∽,利用对应边成比例,结合三角形面积公式即可求.【详解】解:(1)如图1所示.(2)证明:平分,∽∴BD是四边形的“相似对角线”.(3)是四边形的“相似对角线”,三角形与三角形相似.又∽过点作垂足为则【点睛】本题考查相似三角形的判定与性质的综合应用及解直角三角形,对于这种新定义阅读材料题目读,懂题意是解答此题的关键.23、不必封上人行道【分析】过C点作CG⊥AB交AB于G.求需不需要将人行道封上实际上就是比较AB与BE的长短,已知BD,DF的长度,那么AB的长度也就求出来了,现在只需要知道BE的长度即可,有BF的长,ED的长,缺少的是DF的长,根据“背水坡CD的坡度i=1:2,坝高CF为2m”DF是很容易求出的,这样有了CG的长,在△ACG中求出AG的长度,这样就求出AB的长度,有了BE的长,就可以判断出是不是需要封上人行道了.【详解】过C点作CG⊥AB交AB于G.在Rt△CDF中,水坡CD的坡度i=2:1,即tan∠CDF=2,∵CF=2,∴DF=1.∴BF=BD+DF=12+1=13.∴CG=13,在Rt△ACG中,∵∠ACG=30°,∴AG=CG·tan30°=13×=7.5m∴AB=AG+BG=7.5+2=9.5m,BE=12m,AB<BE,∴不必封上人行道.【点睛】本题考查俯角、仰角的定义,要求学生能借助俯角、仰角构造直角三角形并结合图形利用三角函数解直角三角形.24、(1)m≥—;(2)x1=0,x2=2.【分析】(1)方程有两个实数根,必须满足△=b2−4ac≥0,从而建立关于m的不等式,求出实数m的取值范围.(2)答案不唯一,方程有两个不相等的实数根,即△>0,可以解得m>−,在m>−的范围内选取一个合适的整数求
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年地板护理品项目立项申请报告模稿
- 2025年水泥掺合剂项目提案报告
- 2024-2025学年延安市子长县数学三年级第一学期期末联考模拟试题含解析
- 2024-2025学年新疆第二师铁门关市三年级数学第一学期期末学业水平测试试题含解析
- 关于三年级数学说课稿汇编五篇
- 2025年油炸类制品项目提案报告模板
- 2025年新型铁合金用封接玻璃项目规划申请报告模板
- 大学毕业顶岗实习报告九篇
- 加薪申请书模板锦集6篇
- 初二数学教学工作计划范文5篇
- 2025学年人教新版英语七下Unit1随堂小测
- 2024年汽车抵押贷款提前还款合同范例3篇
- 《项目沟通管理培训》课件
- 2024版教育培训机构店面转让及课程合作协议3篇
- GB/T 44916-2024船舶和海上技术船用超低温闸阀设计与试验要求
- 《BL急性肾盂肾炎》课件
- 梦想在路上 高二上学期期中家长会
- 2024-2025学年上学期上海小学语文六年级期末模拟试卷
- 【MOOC】中国文化概论-华南师范大学 中国大学慕课MOOC答案
- 2024年10月自考13658工业设计史论试题及答案
- 2025年蛇年年会汇报年终总结大会模板
评论
0/150
提交评论