




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.如图,已知在△ABC中,DE∥BC,,DE=2,则BC的长是()A.3 B.4 C.5 D.62.已知关于的一元二次方程有一个根为,则的值为()A.0 B.1 C. D.3.若,则的值是()A.1 B.2 C.3 D.44.五张完全相同的卡片上,分别写有数字1,2,3,4,5,现从中随机抽取一张,抽到的卡片上所写数字小于3的概率是()A. B. C. D.5.下列是我国四大银行的商标,其中不是轴对称图形的是()A. B. C. D.6.如图,在正方形ABCD中,E、F分别为BC、CD的中点,连接AE,BF交于点G,将△BCF沿BF对折,得到△BPF,延长FP交BA延长线于点Q,下列结论正确的个数是()①AE=BF;②AE⊥BF;③sin∠BQP=;④S四边形ECFG=2S△BGE.A.4 B.3 C.2 D.17.如图所示,AB是⊙O的直径,点C为⊙O外一点,CA,CD是⊙O的切线,A,D为切点,连接BD,AD.若∠ACD=30°,则∠DBA的大小是()A.15° B.30° C.60° D.75°8.王洪存银行5000元,定期一年后取出3000元,剩下的钱继续定期一年存入,如果每年的年利率不变,到期后取出2750元,则年利率为()A.5% B.20% C.15% D.10%9.下列事件中,是随机事件的是()A.任意画两个直角三角形,这两个三角形相似 B.相似三角形的对应角相等C.⊙O的半径为5,OP=3,点P在⊙O外 D.直径所对的圆周角为直角10.如图,等边△ABC的边长为6,P为BC上一点,BP=2,D为AC上一点,若∠APD=60°,则CD的长为()A.2 B.43 C.2311.关于二次函数y=x2+4x﹣5,下列说法正确的是()A.图象与y轴的交点坐标为(0,5) B.图象的对称轴在y轴的右侧C.当x<﹣2时,y的值随x值的增大而减小 D.图象与x轴的两个交点之间的距离为512.函数y=ax2与y=﹣ax+b的图象可能是()A. B.C. D.二、填空题(每题4分,共24分)13.已知反比例函数的图象经过点(2,﹣3),则此函数的关系式是________.14.由4m=7n,可得比例式=____________.15.抛物线y=﹣(x+)2﹣3的顶点坐标是_____.16.若,则=______17.已知:如图,在菱形ABCD中,F为边AB的中点,DF与对角线AC交于点G,过G作GE⊥AD于点E,若AB=2,且∠1=∠2,则下列结论中一定成立的是_____(把所有正确结论的序号都填在横线上).①DF⊥AB;②CG=2GA;③CG=DF+GE;④S四边形BFGC=﹣1.18.若一个反比例函数的图像经过点和,则这个反比例函数的表达式为__________.三、解答题(共78分)19.(8分)如图1,在正方形ABCD中,点E,F分别是边BC,AB上的点,且CE=BF,连接DE,过点E作EG⊥DE,使EG=DE,连接FG,FC(1)请判断:FG与CE的数量关系是__________,位置关系是__________;(2)如图2,若点E、F分别是CB、BA延长线上的点,其它条件不变,(1)中结论是否仍然成立?请出判断判断并给予证明.20.(8分)已知,是一元二次方程的两个实数根,且,抛物线的图象经过点,,如图所示.(1)求这个抛物线的解析式;(2)设(1)中的抛物线与轴的另一个交点为,抛物线的顶点为,试求出点,的坐标,并判断的形状;(3)点是直线上的一个动点(点不与点和点重合),过点作轴的垂线,交抛物线于点,点在直线上,距离点为个单位长度,设点的横坐标为,的面积为,求出与之间的函数关系式.21.(8分)如图,AN是⊙O的直径,四边形ABMN是矩形,与圆相交于点E,AB=15,D是⊙O上的点,DC⊥BM,与BM交于点C,⊙O的半径为R=1.(1)求BE的长.(2)若BC=15,求的长.22.(10分)文具店有三种品牌的6个笔记本,价格是4,5,7(单位:元)三种,从中随机拿出一个本,已知(一次拿到7元本).(1)求这6个本价格的众数.(2)若琪琪已拿走一个7元本,嘉嘉准备从剩余5个本中随机拿一个本.①所剩的5个本价格的中位数与原来6个本价格的中位数是否相同?并简要说明理由;②嘉嘉先随机拿出一个本后不放回,之后又随机从剩余的本中拿一个本,用列表法求嘉嘉两次都拿到7元本的概率.23.(10分)有一辆宽为的货车(如图①),要通过一条抛物线形隧道(如图②).为确保车辆安全通行,规定货车车顶左右两侧离隧道内壁的垂直高度至少为.已知隧道的跨度为,拱高为.(1)若隧道为单车道,货车高为,该货车能否安全通行?为什么?(2)若隧道为双车道,且两车道之间有的隔离带,通过计算说明该货车能够通行的最大安全限高.24.(10分)如图,在平面直角坐标系中,一次函数的图象与反比例函数()的图象交于,两点,已知点坐标为.(1)求一次函数和反比例函数的解析式;(2)连接,,求的面积.25.(12分)有A、B两组卡片共1张,A组的三张分别写有数字2,4,6,B组的两张分别写有3,1.它们除了数字外没有任何区别,(1)随机从A组抽取一张,求抽到数字为2的概率;(2)随机地分别从A组、B组各抽取一张,请你用列表或画树状图的方法表示所有等可能的结果.现制定这样一个游戏规则:若选出的两数之积为3的倍数,则甲获胜;否则乙获胜.请问这样的游戏规则对甲乙双方公平吗?为什么?26.如图,用一段长为30m的篱笆围成一个一边靠墙的矩形菜园(矩形ABCD),墙长为22m,这个矩形的长AB=xm,菜园的面积为Sm2,且AB>AD.(1)求S与x之间的函数关系式,并写出自变量x的取值范围.(2)若要围建的菜园为100m2时,求该莱园的长.(3)当该菜园的长为多少m时,菜园的面积最大?最大面积是多少m2?
参考答案一、选择题(每题4分,共48分)1、D【分析】由DE∥BC可证△ADE∽△ABC,得到,即可求BC的长.【详解】∵DE∥BC,∴△ADE∽△ABC,∴,∵,DE=2,∴BC=1.故选D.【点睛】本题主要考查了相似三角形的判定与性质,解决本题的关键是要熟练掌握相似三角形的判定和性质.2、B【分析】将x=1代入方程即可得出答案.【详解】将x=1代入方程得:,解得a=1,故答案选择B.【点睛】本题考查的是一元二次方程的解,比较简单,将解直接代入即可得出答案.3、B【分析】根据比例的性质,可用x表示y、z,根据分式的性质,可得答案.【详解】设=k,则x=2k,y=7k,z=5k代入原式原式==故答案为:2.【点睛】本题考查了比例的性质,解题的关键是利用比例的性质,化简求值.4、B【分析】用小于3的卡片数除以卡片的总数量可得答案.【详解】由题意可知一共有5种结果,其中数字小于3的结果有抽到1和2两种,所以.故选:B.【点睛】本题主要考查概率公式,解题的关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.5、A【分析】根据轴对称图形和的概念和各图形特点解答即可.【详解】解:A、不是轴对称图形,故本选项正确;
B、是轴对称图形,故本选项错误;
C、是轴对称图形,故本选项错误;
D、是轴对称图形,故本选项错误;
故选:A.【点睛】本题考查了轴对称图形的特点,判断轴对称图形的关键是寻找对称轴,图象沿对称轴折叠后可重合.6、B【解析】解:∵E,F分别是正方形ABCD边BC,CD的中点,∴CF=BE,在△ABE和△BCF中,∵AB=BC,∠ABE=∠BCF,BE=CF,∴Rt△ABE≌Rt△BCF(SAS),∴∠BAE=∠CBF,AE=BF,故①正确;又∵∠BAE+∠BEA=90°,∴∠CBF+∠BEA=90°,∴∠BGE=90°,∴AE⊥BF,故②正确;根据题意得,FP=FC,∠PFB=∠BFC,∠FPB=90°.∵CD∥AB,∴∠CFB=∠ABF,∴∠ABF=∠PFB,∴QF=QB,令PF=k(k>0),则PB=2k在Rt△BPQ中,设QB=x,∴x2=(x﹣k)2+4k2,∴x=,∴sin=∠BQP==,故③正确;∵∠BGE=∠BCF,∠GBE=∠CBF,∴△BGE∽△BCF,∵BE=BC,BF=BC,∴BE:BF=1:,∴△BGE的面积:△BCF的面积=1:5,∴S四边形ECFG=4S△BGE,故④错误.故选B.点睛:本题主要考查了四边形的综合题,涉及正方形的性质、全等三角形的判定和性质、相似三角形的判定和性质以及折叠的性质的知识点,解决的关键是明确三角形翻转后边的大小不变,找准对应边,角的关系求解.7、D【详解】连接OD,∵CA,CD是⊙O的切线,∴OA⊥AC,OD⊥CD,∴∠OAC=∠ODC=90°,∵∠ACD=30°,∴∠AOD=360°﹣∠C﹣∠OAC﹣∠ODC=150°,∵OB=OD,∴∠DBA=∠ODB=∠AOD=75°.故选D.考点:切线的性质;圆周角定理.8、D【分析】设定期一年的利率是x,则存入一年后的本息和是5000(1+x)元,取3000元后余[5000(1+x)﹣3000]元,再存一年则有方程[5000(1+x)﹣3000]•(1+x)=2750,解这个方程即可求解.【详解】设定期一年的利率是x,根据题意得:一年时:5000(1+x),取出3000后剩:5000(1+x)﹣3000,同理两年后是[5000(1+x)﹣3000](1+x),即方程为[5000(1+x)﹣3000]•(1+x)=2750,解得:x1=10%,x2=﹣150%(不符合题意,故舍去),即年利率是10%.故选:D.【点睛】此题考查了列代数式及一元二次方程的应用,是有关利率的问题,关键是掌握公式:本息和=本金×(1+利率×期数),难度一般.9、A【分析】根据相似三角形的判定定理、相似三角形的性质定理、点与圆的位置关系、圆周角定理判断即可.【详解】解:A、任意画两个直角三角形,这两个三角形相似是随机事件,符合题意;B、相似三角形的对应角相等是必然事件,故不符合题意;C、⊙O的半径为5,OP=3,点P在⊙O外是不可能事件,故不符合题意;D、直径所对的圆周角为直角是必然事件,故不符合题意;故选:A.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.也考查了相似三角形的判定与性质,点与圆的位置关系,圆周角定理等知识.10、B【解析】由等边三角形的性质结合条件可证明△ABP∽△PCD,由相似三角形的性质可求得CD.【详解】∵△ABC为等边三角形,∴∠B=∠C=60又∵∠APD+∠DPC=∠B+∠BAP,且∠APD=60∴∠BAP=∠DPC,∴△ABP∽△PCD,∴BPCD∵AB=BC=6,BP=2,∴PC=4,∴2CD∴CD=4故选:B.【点睛】考查相似三角形的判定与性质,掌握相似三角形的判定定理是解题的关键.11、C【分析】通过计算自变量为0的函数值可对A进行判断;利用对称轴方程可对B进行判断;根据二次函数的性质对C进行判断;通过解x2+4x﹣5=0得抛物线与x轴的交点坐标,则可对D进行判断.【详解】A、当x=0时,y=x2+4x﹣5=﹣5,所以抛物线与y轴的交点坐标为(0,﹣5),所以A选项错误;B、抛物线的对称轴为直线x=﹣=﹣2,所以抛物线的对称轴在y轴的左侧,所以B选项错误;C、抛物线开口向上,当x<﹣2时,y的值随x值的增大而减小,所以C选项正确;D、当y=0时,x2+4x﹣5=0,解得x1=﹣5,x2=1,抛物线与x轴的交点坐标为(﹣5,0),(1,0),两交点间的距离为1+5=6,所以D选项错误.故选:C.【点睛】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.12、B【解析】选项中,由图可知:在,;在,,∴,所以A错误;选项中,由图可知:在,;在,,∴,所以B正确;选项中,由图可知:在,;在,,∴,所以C错误;选项中,由图可知:在,;在,,∴,所以D错误.故选B.点睛:在函数与中,相同的系数是“”,因此只需根据“抛物线”的开口方向和“直线”的变化趋势确定出两个解析式中“”的符号,看两者的符号是否一致即可判断它们在同一坐标系中的图象情况,而这与“b”的取值无关.二、填空题(每题4分,共24分)13、【解析】试题分析:利用待定系数法,直接把已知点代入函数的解析式即可求得k=-6,所以函数的解析式为:.14、【分析】根据比例的基本性质,将原式进行变形,即等积式化比例式后即可得.【详解】解:∵4m=7n,∴.故答案为:【点睛】本题考查比例的基本性质,将比例进行变形是解答此题的关键.15、(﹣,﹣3)【分析】根据y=a(x﹣h)2+k的顶点是(h,k),可得答案.【详解】解:y=﹣(x+)2﹣3的顶点坐标是(﹣,﹣3),故答案为:(﹣,﹣3).【点睛】本题考查了抛物线顶点坐标的问题,掌握抛物线顶点式解析式是解题的关键.16、【分析】可设x=4k,根据已知条件得到y=3k,再代入计算即可得到正确结论.【详解】解:∵,∴y=3k,x=4k;代入=故答案为【点睛】本题考查了比例的性质的应用,主要考查学生的计算能力,题目比较好,难度不大.17、①②③【分析】①由四边形ABCD是菱形,得出对角线平分对角,求得∠GAD=∠2,得出AG=GD,AE=ED,由SAS证得△AFG≌△AEG,得出∠AFG=∠AEG=90°,即可得出①正确;②由DF⊥AB,F为边AB的中点,证得AD=BD,证出△ABD为等边三角形,得出∠BAC=∠1=∠2=30°,由AC=2AB•cos∠BAC,AG,求出AC,AG,即可得出②正确;③由勾股定理求出DF,由GE=tan∠2•ED求出GE,即可得出③正确;④由S四边形BFGC=S△ABC﹣S△AGF求出数值,即可得出④不正确.【详解】∵四边形ABCD是菱形,∴∠FAG=∠EAG,AB=AD,BC∥AD,∴∠1=∠GAD.∵∠1=∠2,∴∠GAD=∠2,∴AG=GD.∵GE⊥AD,∴GE垂直平分AD,∴AE=ED.∵F为边AB的中点,∴AF=AE,在△AFG和△AEG中,∵,∴△AFG≌△AEG(SAS),∴∠AFG=∠AEG=90°,∴DF⊥AB,∴①正确;连接BD交AC于点O.∵DF⊥AB,F为边AB的中点,∴AFAB=1,AD=BD.∵AB=AD,∴AD=BD=AB,∴△ABD为等边三角形,∴∠BAD=∠BCD=60°,∴∠BAC=∠1=∠2=30°,∴AC=2AO=2AB•cos∠BAC=2×22,AG,∴CG=AC﹣AG=2,∴CG=2GA,∴②正确;∵GE垂直平分AD,∴EDAD=1,由勾股定理得:DF,GE=tan∠2•ED=tan30°×1,∴DF+GECG,∴③正确;∵∠BAC=∠1=30°,∴△ABC的边AC上的高等于AB的一半,即为1,FGAG,S四边形BFGC=S△ABC﹣S△AGF211,∴④不正确.故答案为:①②③.【点睛】本题考查了菱形的性质、全等三角形的判定与性质、勾股定理、三角函数、线段垂直平分线的性质、含30°角的直角三角形的性质等知识;本题综合性强,有一定难度.18、【分析】这个反比例函数的表达式为,将A、B两点坐标代入,列出方程即可求出k的值,从而求出反比例函数的表达式.【详解】解:设这个反比例函数的表达式为将点和代入,得化简,得解得:(反比例函数与坐标轴无交点,故舍去)解得:∴这个反比例函数的表达式为故答案为:.【点睛】此题考查的是求反比例函数的表达式,掌握待定系数法是解决此题的关键.三、解答题(共78分)19、(1)FG=CE,FG∥CE;(2)成立,理由见解析.【解析】(1)结论:FG=CE,FG∥CE,如图1中,设DE与CF交于点M,首先证明△CBF≌△DCE,推出DE⊥CF,再证明四边形EGFC是平行四边形即可;(2)结论仍然成立,如图2中,设DE与CF交于点M,首先证明△CBF≌△DCE,推出DE⊥CF,再证明四边形EGFC是平行四边形即可.【详解】(1)结论:FG=CE,FG∥CE.理由:如图1中,设DE与CF交于点M,∵四边形ABCD是正方形,∴BC=CD,∠ABC=∠DCE=90°,在△CBF和△DCE中,,∴△CBF≌△DCE,∴∠BCF=∠CDE,CF=DE,∵∠BCF+∠DCM=90°,∴∠CDE+∠DCM=90°,∴∠CMD=90°,∴CF⊥DE,∵GE⊥DE,∴EG∥CF,∵EG=DE,CF=DE,∴EG=CF,∴四边形EGFC是平行四边形.∴GF=EC,∴GF=EC,GF∥EC.故答案为FG=CE,FG∥CE;(2)结论仍然成立.理由:如图2中,设DE与CF交于点M,∵四边形ABCD是正方形,∴BC=CD,∠ABC=∠DCE=90°,在△CBF和△DCE中,,∴△CBF≌△DCE,∴∠BCF=∠CDE,CF=DE,∵∠BCF+∠DCM=90°,∴∠CDE+∠DCM=90°,∴∠CMD=90°,∴CF⊥DE,∵GE⊥DE,∴EG∥CF,∵EG=DE,CF=DE,∴EG=CF,∴四边形EGFC是平行四边形.∴GF=EC,∴GF=EC,GF∥EC.【点睛】本题三角形与四边形综合问题,涉及全等三角形的判定与性质,正方形的性质,平行四边形的判定与性质,熟练掌握全等三角形的性质是解题的关键.20、(1);(2),,是直角三角形;(3)当时,,当或时,.【分析】(1)先解一元二次方程,然后用待定系数法求出抛物线解析式;(2)先解方程求出抛物线与轴的交点,再判断出和都是等腰直角三角形,从而得到结论;(3)先求出,再分两种情况,当点在点上方和下方,分别计算即可.【详解】解(1),,,,是一元二次方程的两个实数根,且,,,抛物线的图象经过点,,,,抛物线解析式为,(2)令,则,,,,,顶点坐标,过点作轴,,,和都是等腰直角三角形,,,是直角三角形;(3)如图,,,直线解析式为,点的横坐标为,轴,点的横坐标为,点在直线上,点在抛物线上,,,过点作,是等腰直角三角形,,,当点在点上方时,即时,,,如图3,当点在点下方时,即或时,,.综上所述:当点在点上方时,即时,,当点在点下方时,即或时,.【点睛】此题是二次函数综合题,主要考查了一元二次方程的解法,待定系数法求函数解析式,等腰直角三角形的性质和判定,解本题的关键是利用等腰直角三角形判定和性质求出,.21、(1)1﹣15;(2)15π【分析】(1)连接OE,过O作OF⊥BM于F,在Rt△OEF中,由勾股定理得出EF的长,进而求得EB的长.(2)连接OD,则在直角三角形ODQ中,可求得∠QOD=60°,过点E作EH⊥AO于H,在直角三角形OEH中,可求得∠EOH=1°,则得出的长度.【详解】解:(1)连接OE,过O作OF⊥BM于F,则四边形ABFO是矩形,∴FO=AB=15,BF=AO,在Rt△OEF中,EF==15,∵BF=AO=1,∴BE=1﹣15.(2)连接OD,在直角三角形ODQ中,∵OD=1,OQ=1﹣15=15,∴∠ODQ=1°,∴∠QOD=60°,过点E作EH⊥AO于H,在直角三角形OEH中,∵OE=1,EH=15,∴,∴∠EOH=1°,∴∠DOE=90°,∴=π•60=15π.【点睛】本题考查了直角三角形的性质,弧长的计算、矩形的性质以及垂径定理,是基础知识要熟练掌握.22、(1)众数是7;(2)①相同;见详解;②【分析】(1)由概率公式求出7元本的个数,由众数的定义即可得出答案;
(2)①由中位数的定义即可得出答案;
②用列表法得出所有结果,嘉嘉两次都拿到7元本的结果有6个,由概率公式即可得出答案.【详解】解:(1)∵(一次拿到7元本),
∴7元本的个数为6×=4(个),按照从小到大的顺序排列为4,5,7,7,7,7,
∴这6个本价格的众数是7.(2)①相同;∵原来4、5、7、7、7、7,∴中位数为,5本价格为4、5、7、7、7,中位数为7,∴,∴相同.②见图第一个第二个4577745777∴(两次都为7).【点睛】本题考查了众数、中位数以及列表法求概率;熟练掌握众数、中位数的定义,列表得出所有结果是解题的关键.23、(1)货车能安全通行,理由见解析;(2)最大安全限高为2.29米【分析】(1)根据跨度求出点B的坐标,然后设抛物线顶点式形式y=ax2+4,然后把点B的坐标代入求出a的值,即可得解;
(2)根据车的宽度为2,求出x=2.2时的函数值,再根据限高求出货车的最大限制高度即可.【详解】(1)货车能安全通行.∵隧道跨度为8米,隧道的顶端坐标为(O,4),
∴A、B关于y轴对称,
∴OA=OB=AB=×8=4,
∴点B的坐标为(4,0),
设抛物线顶点式形式y=ax2+4,
把点B坐标代入得,16a+4=0,
解得a=-,
所以,抛物线解析式为y=-x2+4(-4≤x≤4);由可得,.∵,∴货车能够安全通行.答:货车能够安全通行.
(2)当时,=2.1.∵,∴货
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 大数据地震预警系统安全重点基础知识点
- 2025年证券从业资格证案例分享试题及答案
- 坚持学习提升特许金融分析师考试能力的策略试题及答案
- 2025年注册会计师考试审计风格与技巧试题及答案
- 双边市场与证券投资分析的试题及答案
- 复习2025年特许金融分析师考试的重点内容试题及答案
- 2025年注册会计师考试信息披露规范与案例分析试题及答案
- 证券从业资格备考指南试题及答案
- 教学改革课题申报书范文
- 针对性学习2025证券从业资格证试题及答案
- 【原创】《圆柱与圆锥》复习课教教学设计
- C6-5-2设备单机试运转记录
- 管道夜间施工方案
- 正交试验设计与数据处理.ppt
- 稀土离子的光谱特性.PPT
- 和君咨询ECIRM模型
- 让孩子学会排解压力 学生家长面授课参考教案
- 加工中心主轴传动系统设计说明书
- 信息资源目录报告格式参考-省政府办公厅 信息资源目录.doc
- 轮胎式装载机检测报告.doc
- 最准确工程勘察设计收费标准快速计算表EXCEL[共4页]
评论
0/150
提交评论