2022-2023学年湖北省恩施州利川市九年级数学第一学期期末质量检测模拟试题含解析_第1页
2022-2023学年湖北省恩施州利川市九年级数学第一学期期末质量检测模拟试题含解析_第2页
2022-2023学年湖北省恩施州利川市九年级数学第一学期期末质量检测模拟试题含解析_第3页
2022-2023学年湖北省恩施州利川市九年级数学第一学期期末质量检测模拟试题含解析_第4页
2022-2023学年湖北省恩施州利川市九年级数学第一学期期末质量检测模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.用配方法解一元二次方程x2﹣6x﹣2=0,配方后得到的方程是()A.(x﹣3)2=2 B.(x﹣3)2=8 C.(x﹣3)2=11 D.(x+3)2=92.过矩形ABCD的对角线AC的中点O作EF⊥AC,交BC边于点E,交AD边于点F,分别连接AE、CF,若AB,∠DCF30°,则EF的长为().A.2 B.3 C. D.3.如图,二次函数y=ax2+bx+c(a>0)的图象与x轴的交点A、B的横坐标分别为﹣1和3,则函数值y随x值的增大而减小时,x的取值范围是()A.x<1 B.x>1 C.x<2 D.x>24.下列图形中,既是中心对称图形又是轴对称图形的有几个()A.4个 B.3个 C.2个 D.1个5.已知,,是反比例函数的图象上的三点,且,则、、的大小关系是()A. B. C. D.6.如图物体由两个圆锥组成,其主视图中,.若上面圆锥的侧面积为1,则下面圆锥的侧面积为()A.2 B. C. D.7.将抛物线向上平移两个单位长度,得到的抛物线解析式是()A. B.C. D.8.的相反数是()A. B. C.2019 D.-20199.若△ABC∽△DEF,相似比为2:3,则对应面积的比为()A.3:2 B.3:5 C.9:4 D.4:910.在一个不透明的袋子中装有除颜色外其余均相同的m个小球,其中8个黑球,从袋中随机摸出一球,记下其颜色,这称为一次摸球实验,之后把它放回袋中,搅匀后,再继续摸出一球,记下其颜色,以下是利用计算机模拟的摸球试验次数与摸出黑球次数的列表:摸球试验次数100100050001000050000100000摸出黑球次数49425172232081669833329根据列表,可以估计出m的值是()A.8 B.16 C.24 D.32二、填空题(每小题3分,共24分)11.如图,正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为1:,点A的坐标为(1,0),则四边形ODEF的面积为_____.12.已知y=x2+(1﹣a)x+2是关于x的二次函数,当x的取值范围是0≤x≤4时,y仅在x=4时取得最大值,则实数a的取值范围是_____.13.已知(x、y、z均不为零),则_____________.14.如图,已知在Rt△ABC中,∠ACB=90°,∠B=30°,将△ABC绕点C顺时针旋转一定角度得△DEC,此时CD⊥AB,连接AE,则tan∠EAC=____.15.反比例函数y=的图象位于第二、四象限,则k的取值范围是_______.16.若是方程的一个根,则代数式的值等于______.17.如图,在△ABC中,点D,E分别是AC,BC边上的中点,则△DEC的周长与△ABC的周长比等于_______.18.在本赛季比赛中,某运动员最后六场的得分情况如下:则这组数据的极差为_______.三、解答题(共66分)19.(10分)如图,在平面直角坐标系中,点O为坐标原点,A点的坐标为(3,0),以OA为边作等边三角形OAB,点B在第一象限,过点B作AB的垂线交x轴于点C.动点P从O点出发沿着OC向点C运动,动点Q从B点出发沿着BA向点A运动,P,Q两点同时出发,速度均为1个单位/秒.当其中一个点到达终点时,另一个点也随之停止.设运动时间为t秒.(1)求线段BC的长;(2)过点Q作x轴垂线,垂足为H,问t为何值时,以P、Q、H为顶点的三角形与△ABC相似;(3)连接PQ交线段OB于点E,过点E作x轴的平行线交线段BC于点F.设线段EF的长为m,求m与t之间的函数关系式,并直接写出自变量t的取值范围.20.(6分)已知在△ABC中,∠A=∠B=30°.(1)尺规作图:在线段AB上找一点O,以O为圆心作圆,使⊙O经过A,C两点;(2)在(1)中所作的图中,求证:BC是⊙O的切线.21.(6分)如图,一块等腰三角形钢板的底边长为,腰长为.(1)求能从这块钢板上截得的最大圆的半径;(2)用一个圆完整覆盖这块钢板,这个圆的最小半径是多少?22.(8分)如图,在平行四边形ABCD中,E为AD边上一点,BE平分∠ABC,连接CE,已知DE=6,CE=8,AE=1.(1)求AB的长;(2)求平行四边形ABCD的面积;(3)求cos∠AEB.23.(8分)从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.如图1,在中,是的完美分割线,且,则的度数是如图2,在中,为角平分线,,求证:为的完美分割线.如图2,中,是的完美分割线,且是以为底边的等腰三角形,求完美分割线的长.24.(8分)解方程25.(10分)如图,抛物线y=ax2﹣x+c与x轴相交于点A(﹣2,0)、B(4,0),与y轴相交于点C,连接AC,BC,以线段BC为直径作⊙M,过点C作直线CE∥AB,与抛物线和⊙M分别交于点D,E,点P在BC下方的抛物线上运动.(1)求该抛物线的解析式;(2)当△PDE是以DE为底边的等腰三角形时,求点P的坐标;(3)当四边形ACPB的面积最大时,求点P的坐标并求出最大值.26.(10分)解不等式组并求出最大整数解.

参考答案一、选择题(每小题3分,共30分)1、C【分析】根据配方法即可求出答案.【详解】∵x2﹣6x﹣2=0,∴x2﹣6x=2,∴(x﹣3)2=11,故选:C.【点睛】考查了配方法解方程,配方法的一般步骤:①把常数项移到等号的右边;②把二次项的系数化为1;③等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.2、A【解析】试题分析:由题意可证△AOF≌△COE,EO=FO,AF=CF=CE=AE,四边形AECF是菱形,若∠DCF=30°,则∠FCE=60°,△EFC是等边三角形,∵CD=AB=,∴DF=tan30°×CD=×=1,∴CF=2DF=2×1=2,∴EF=CF=2,故选A.考点:1.矩形及菱形性质;2.解直角三角形.3、A【分析】首先根据抛物线与坐标轴的交点确定对称轴,然后根据其开口方向确定当x满足什么条件数值y随x值的增大而减小即可.【详解】∵二次函数的图象与x轴的交点A、B的横坐标分别为﹣1、3,∴AB中点坐标为(1,0),而点A与点B是抛物线上的对称点,∴抛物线的对称轴为直线x=1,∵开口向上,∴当x<1时,y随着x的增大而减小,故选:A.【点睛】本题考查了二次函数的性质,掌握二次函数的性质以及判断方法是解题的关键.4、D【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:第一个图形是轴对称图形,不是中心对称图形;第二个图形是轴对称图形,是中心对称图形;第三个图形是轴对称图形,不是中心对称图形;第四个图形不是轴对称图形,是中心对称图形;既是中心对称图形又是轴对称图形的有1个,故选:D.【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5、C【分析】先根据反比例函数y=的系数2>0判断出函数图象在一、三象限,在每个象限内,y随x的增大而减小,再根据x1<x2<0<x3,判断出y1、y2、y3的大小.【详解】解:函数大致图象如图,∵k>0,则图象在第一、三象限,在每个象限内,y随x的增大而减小,又∵x1<x2<0<x3,∴y2<y1<y3.故选C.【点睛】本题考查了反比例函数图象上点的坐标特征.6、D【分析】先证明△ABD为等腰直角三角形得到∠ABD=45°,BD=AB,再证明△CBD为等边三角形得到BC=BD=AB,利用圆锥的侧面积的计算方法得到上面圆锥的侧面积与下面圆锥的侧面积的比等于AB:CB,从而得到下面圆锥的侧面积.【详解】∵∠A=90°,AB=AD,∴△ABD为等腰直角三角形,∴∠ABD=45°,BD=AB,∵∠ABC=105°,∴∠CBD=60°,而CB=CD,∴△CBD为等边三角形,∴BC=BD=AB,∵上面圆锥与下面圆锥的底面相同,∴上面圆锥的侧面积与下面圆锥的侧面积的比等于AB:CB,∴下面圆锥的侧面积=×1=.故选D.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了等腰直角三角形和等边三角形的性质.7、D【分析】按“左加右减括号内,上加下减括号外”的规律平移即可得出所求函数的解析式.【详解】由题意得=.故选D.【点睛】本题考查了二次函数图象的平移,其规律是:将二次函数解析式转化成顶点式y=a(x-h)2+k

(a,b,c为常数,a≠0),确定其顶点坐标(h,k),在原有函数的基础上“h值正右移,负左移;k值正上移,负下移”.8、A【解析】直接利用相反数的定义分析得出答案.【详解】解:的相反数是:.故选A.【点睛】此题主要考查了相反数,正确把握相反数的定义是解题关键.9、D【解析】根据相似三角形的面积比等于相似比的平方解答.【详解】解:∵△ABC∽△DEF,相似比为2:3,∴对应面积的比为()2=,故选:D.【点睛】本题考查相似三角形的性质,熟练掌握相似三角形的性质定理是解题的关键.10、C【分析】利用大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率求解即可.【详解】解:∵通过大量重复试验后发现,摸到黑球的频率稳定于,由题意得:,解得:m=24,故选:C.【点睛】此题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率,关键是根据黑球的频率得到相应的等量关系.二、填空题(每小题3分,共24分)11、1【分析】利用位似图形的性质得出D点坐标,进而求出正方形的面积.【详解】∵正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为1:,点A的坐标为(1,0),∴OA:OD=1:,∵OA=1,∴OD=,∴正方形ODEF的面积为:OD1=×=1.故答案为:1.【点睛】此题主要考查了位似变换以及坐标与图形的性质,得出OD的长是解题关键.12、a<1【分析】先求出抛物线的对称轴,再根据二次函数的增减性列出不等式,求解即可.【详解】解:∵0≤x≤4时,y仅在x=4时取得最大值,∴﹣<,解得a<1.故答案为:a<1.【点睛】本题考查了二次函数的最值问题,熟练掌握二次函数的增减性和对称轴公式是解题的关键.13、【分析】根据题意,可设x=5k,y=4k,z=3k,将其代入分式即可.【详解】解:∵∴设x=5k,y=4k,z=3k,将其代入分式中得:.

故答案为.【点睛】本题考查了比例的性质,解此类题可根据分式的基本性质先用未知数k表示出x,y,z,再代入计算.14、【分析】设,得,根据旋转的性质得,∠1=30°,分别求得,,继而求得答案.【详解】如图,AB与CD相交于G,过点E作EF⊥AC延长线于点F,设,∵∠ACB=90°,∠B=30°,∴,∴,根据旋转的性质知:,∠DCE=∠ACB=90°,∵CD⊥AB,∴∠1+∠BAC=90°,∴∠1=30°,∵∠1+∠2+∠DCE=1800°,∴∠2=60°,∴,,∴,故答案为:.【点睛】本题考查了旋转的性质以及锐角三角函数的知识,构建合适的辅助线,借助解直角三角形求解是解答本题的关键.15、【解析】根据k<0时,反比例函数的图象位于二、四象限,可列出不等式,解之即可得出答案.【详解】∵反比例函数y=的图象位于第二、四象限,∴3k−1<0,解得:.故答案为.【点睛】本题考查了反比例函数的图象和性质.根据反比例函数的图象所在象限列出不等式是解题的关键.16、1【分析】把代入已知方程,求得,然后得的值即可.【详解】解:把代入已知方程得,∴,故答案为1.【点睛】本题考查一元二次方程的解以及代数式求值,注意已知条件与待求代数式之间的关系.17、1:1.【分析】先根据三角形中位线定理得出DE∥AB,DE=AB,可推出△CDE∽△CAB,即可得出答案.【详解】解:∵点D,E分别是AC和BC的中点,∴DE为△ABC中位线,∴DE∥AB,DE=AB,∴△CDE∽△CAB,∴==.故答案为:1:1.【点睛】本题考查了相似三角形的判定和性质,三角形的中位线的性质,熟练掌握相似三角形的判定和性质定理是解题的关键.18、1【分析】极差是指一组数据中最大数据与最小数据的差.极差=最大值−最小值,根据极差的定义即可解答.【详解】解:由题意可知,极差为28−12=1,

故答案为:1.【点睛】本题考查了极差的定义,解题时牢记定义是关键.三、解答题(共66分)19、(2);(2)t=2或2;(3)().【分析】(2)由等边三角形OAB得出∠ABC=92°,进而得出CO=OB=AB=OA=3,AC=6,求出BC即可;(2)需要分类讨论:△PHQ∽△ABC和△QHP∽△ABC两种情况;(3)过点Q作QN∥OB交x轴于点N,得出△AQN为等边三角形,由OE∥QN,得出△POE∽△PNQ,以及,表示出OE的长,利用m=BE=OB﹣OE求出即可.【详解】(2)如图l,∵△AOB为等边三角形,∴∠BAC=∠AOB=62,∵BC⊥AB,∴∠ABC=92°,∴∠ACB=32°,∠OBC=32°,∴∠ACB=∠OBC,∴CO=OB=AB=OA=3,∴AC=6,∴BC=AC=;(2)如图2,过点Q作x轴垂线,垂足为H,则QH=AQ•sin62°=.需要分类讨论:当△PHQ∽△ABC时,,即:,解得,t=2.同理,当△QHP∽△ABC时,t=2.综上所述,t=2或t=2;(3)如图2,过点Q作QN∥OB交x轴于点N,∴∠QNA=∠BOA=62°=∠QAN,∴QN=QA,∴△AQN为等边三角形,∴NQ=NA=AQ=3﹣t,∴ON=3﹣(3﹣t)=t,∴PN=t+t=2t,∴OE∥QN,∴△POE∽△PNQ,∴,∴,∴,∵EF∥x轴,∴∠BFE=∠BCO=∠FBE=32°,∴EF=BE,∴m=BE=OB﹣OE=(2<t<3).考点:相似形综合题.20、(1)见解析;(2)见解析【分析】(1)作AC的垂直平分线MN交AB于点O,以O为圆心,OA为半径作⊙O即可.(2)根据题目中给的已知条件结合题(1)所作的图综合应用证明∠OCB=90°即可解决问题.【详解】(1)解:如图,⊙O即为所求.(2)证明:连接OC.∵∠A=∠B=30°,∴∠ACB=180°﹣30°﹣30°=120°,∵MN垂直平分相对AC,∴OA=OC,∴∠A=∠ACO=30°,∴∠OCB=90°,∴OC⊥BC,∴BC是⊙O的切线.【点睛】本题主要考查的是尺规作图的方法以及圆的综合应用,注意在尺规作图的时候需要保留作图痕迹.21、(1)cm;(2)40cm.【分析】(1)由于三角形ABC是等腰三角形,过A作AD⊥BC于D,那么根据勾股定理得到AD=30,又从这块钢板上截得的最大圆就是三角形的内切圆,根据内切圆的圆心的性质知道其圆心在AD上,分别连接AO、BO、CO,然后利用三角形的面积公式即可求解;(2)由于一个圆完整覆盖这块钢板,那么这个圆是三个三角形的外接圆,设覆盖圆的半径为R,根据垂径定理和勾股定理即可求解【详解】解:(1)如图,过A作AD⊥BC于D∵AB=AC=50,BC=80∴根据等腰三角形三线合一的性质及勾股定理可得AD=30,BD=CD=40,设最大圆半径为r,则S△ABC=S△ABO+S△BOC+S△AOC,∴S△ABC=×BC×AD=(AB+BC+CA)r×80×30=(50+80+50)r解得:r=cm;(2)设覆盖圆的半径为R,圆心为O′,∵△ABC是等腰三角形,过A作AD⊥BC于D,∴BD=CD=40,AD=,∴O′在AD直线上,连接O′C,在Rt△O′DC中,由R2=402+(R-30)2,∴R=;若以BD长为半径为40cm,也可以覆盖,∴最小为40cm.【点睛】此题分别考查了三角形的外接圆与外心、内切圆与内心、等腰三角形的性质,综合性比较强,解题的关键是熟练掌握外心与内心的性质与等腰三角形的特殊性.22、(1)1;(2)128;(3).【分析】(1)由平行四边形的性质及角平分线的定义可得出AB=AE,进而再利用题中数据即可求解结论;(2)易证CED为直角三角形,则CE⊥AD,基础CE为平行四边形的高,利用平行四边形的面积公式计算即可;(3)易证∠BCE=90°,求cos∠AEB的值可转化为求cos∠EBC的值,利用勾股定理求出BE的长即可.【详解】解:(1)∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AEB=∠CBE,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠ABE=∠AEB,∴AB=AE=1,(2)∵四边形ABCD是平行四边形.∴CD=AB=1,在CED中,CD=1,DE=6,CE=8,∴ED2+CE2=CD2,∴∠CED=90°.∴CE⊥AD,∴平行四边形ABCD的面积=AD•CE=(1+6)×8=128;(3)∵四边形ABCD是平行四边形.∴BC∥AD,BC=AD,∴∠BCE=∠CED=90°,AD=16,∴RtBCE中,BE==8,∴cos∠AEB=cos∠EBC===.【点睛】本题主要考查平行四边形的性质、平行四边形的面积公式运用、解直角三角形的有关知识及角平分线的性质等问题,应熟练掌握.23、(1)88°;(2)详见解析;(3)【分析】(1)是的完美分割线,且,得∠ACD=44°,∠BCD=44°,进而即可求解;(2)由,得,由平分,,得为等腰三角形,结合,即可得到结论;(3)由是的完美分割线,得从而得,设,列出方程,求出x的值,再根据,即可得到答.【详解】(1)∵是的完美分割线,且,∴,∠A=∠ACD=44°,∴∠A=∠BCD=44°,∴.故答案是:88°;,,不是等腰三角形,平分,,,为等腰三角形.,,,是的完美分割线.∵是以为底边的等腰三角形,∴,∵是的完美分割线,∴,设,则,,,.【点睛】本题主要考查等腰三角形的性质与相似三角形的判定和性质定理,掌握相似三角形的性质定理,是解题的关键.24、,.【解析】分析:用配方法解一元二次方程即可.还可以用公式法或者因式分解法.详解:方法一:移项,得,二次项系数化为1,得,,,由此可得,,.方法二:方程整理得:分解因式得:(x−1)(2x−1)=0,解得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论