




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.下列方程属于一元二次方程的是()A. B.C. D.2.若,则的值是()A.1 B.2 C.3 D.43.下列方程中是一元二次方程的是()A.xy+2=1 B.C.x2=0 D.ax2+bx+c=04.如图,双曲线与直线相交于、两点,点坐标为,则点坐标为()A. B. C. D.5.“泱泱华夏,浩浩千秋.于以求之?旸谷之东.山其何辉,韫卞和之美玉……”这是武汉16岁女孩陈天羽用文言文写70周年阅兵的观后感.小汀州同学把这篇气势磅礴、文采飞扬的文章放到自己的微博上,并决定用微博转发的方式传播.他设计了如下的传播规则:将文章发表在自己的微博上,再邀请n个好友转发,每个好友转发之后,又邀请n个互不相同的好友转发,依此类推.已知经过两轮转发后,共有111个人参与了宣传活动,则n的值为()A.9 B.10 C.11 D.126.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点(﹣3,0),其对称轴为直线x=﹣,结合图象分析下列结论:①abc>0;②3a+c>0;③当x<0时,y随x的增大而增大:④若m,n(m<n)为方程a(x+3)(x﹣2)+3=0的两个根,则m<﹣3且n>2;⑤<0,其中正确的结论有()A.2个 B.3个 C.4个 D.5个7.若分式的值为,则的值为()A. B. C. D.8.如下是一种电子记分牌呈现的数字图形,其中既是轴对称图形又是中心对称图形的是()A. B. C. D.9.在中,,,则()A.60° B.90° C.120° D.135°10.下列图形中,是中心对称图形但不是轴对称图形的是()A. B. C. D.11.二次函数图象的一部分如图所示,顶点坐标为,与轴的一个交点的坐标为(-3,0),给出以下结论:①;②;③若、为函数图象上的两点,则;④当时方程有实数根,则的取值范围是.其中正确的结论的个数为()A.1个 B.2个 C.3个 D.4个12.两个相似三角形,其面积比为16:9,则其相似比为()A.16:9 B.4:3 C.9:16 D.3:4二、填空题(每题4分,共24分)13.二次函数图象的顶点坐标为________.14.抛物线y=(x﹣2)2的顶点坐标是_____.15.在某一时刻,测得一根高为的竹竿的影长为,同时同地测得一栋楼的影长为,则这栋楼的高度为________.16.在△ABC中,∠C=90°,BC=2,,则边AC的长是.17.某游乐场新推出一个“极速飞车”的项目.项目有两条斜坡轨道以满足不同的难度需求,游客可以乘坐垂直升降电梯AB自由上下选择项目难度,其中斜坡轨道BC的坡度为,BC=米,CD=8米,∠D=36°,(其中A,B,C,D均在同一平面内)则垂直升降电梯AB的高度约为__________米.(精确到0.1米,参考数据:)18.如图所示,在中,,垂直平分,交于点,垂足为点,,,则等于___________.三、解答题(共78分)19.(8分)已知,如图,在矩形ABCD中,对角线AC与BD相交于点O,过点C作BD的平行线,过点D作AC的平行线,两线交于点P.①求证:四边形CODP是菱形.②若AD=6,AC=10,求四边形CODP的面积.20.(8分)用你喜欢的方法解方程(1)x2﹣6x﹣6=0(2)2x2﹣x﹣15=021.(8分)如图,已知MN是⊙O的直径,直线PQ与⊙O相切于P点,NP平分∠MNQ.(1)求证:NQ⊥PQ;(2)若⊙O的半径R=3,NP=,求NQ的长.22.(10分)在一个不透明的小布袋中装有4个质地、大小完全相同的小球,它们分别标有数字0,1,2,3,小明从布袋里随机摸出一个小球,记下数字为,小红在剩下的3个小球中随机摸出一个小球,记下数字为,这样确定了点的坐标.(1)画树状图或列表,写出点所有可能的坐标;(2)小明和小红约定做一个游戏,其规则为:若在第一象限,则小明胜;否则,小红胜;这个游戏公平吗?请你作出判断并说明理由.23.(10分)如图,⊙O的直径AB为10cm,弦BC为5cm,D、E分别是∠ACB的平分线与⊙O,AB的交点,P为AB延长线上一点,且PC=PE.(1)求AC、AD的长;(2)试判断直线PC与⊙O的位置关系,并说明理由.24.(10分)已知抛物线(是常数)经过点.(1)求该抛物线的解析式和顶点坐标.(2)若点在抛物线上,且点关于原点的对称点为.①当点落在该抛物线上时,求的值;②当点落在第二象限内,取得最小值时,求的值.25.(12分)如图,在直角坐标系中,抛物线y=ax2+bx-2与x轴交于点A(-3,0)、B(1,0),与y轴交于点C.(1)求抛物线的函数表达式.(2)在抛物线上是否存在点D,使得△ABD的面积等于△ABC的面积的倍?若存在,求出点D的坐标;若不存在,请说明理由.(3)若点E是以点C为圆心且1为半径的圆上的动点,点F是AE的中点,请直接写出线段OF的最大值和最小值.26.在Rt△ABC中,∠C=90°,AC=,BC=.解这个直角三角形.
参考答案一、选择题(每题4分,共48分)1、A【解析】本题根据一元二次方程的定义求解.一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为1.【详解】解:A、该方程符合一元二次方程的定义,符合题意;B、该方程属于二元二次方程,不符合题意;C、当a=1时,该方程不是一元二次方程,不符合题意;D、该方程不是整式方程,不是一元二次方程,不符合题意.故选:A.【点睛】本题利用了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=1(且a≠1).特别要注意a≠1的条件.这是在做题过程中容易忽视的知识点.2、B【分析】根据比例的性质,可用x表示y、z,根据分式的性质,可得答案.【详解】设=k,则x=2k,y=7k,z=5k代入原式原式==故答案为:2.【点睛】本题考查了比例的性质,解题的关键是利用比例的性质,化简求值.3、C【解析】分析:本题根据一元二次方程的定义解答.一元二次方程必须满足四个条件:(1)未知数的最高次数是1;(1)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.详解:A.是二元二次方程,故本选项错误;B.是分式方程,不是整式方程,故本选项错误;C.是一元二次方程,故本选项正确;D.当a、b、c是常数,a≠0时,方程才是一元二次方程,故本选项错误.故选C.点睛:本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是1.4、B【解析】反比例函数的图象是中心对称图形,则经过原点的直线的两个交点一定关于原点对称.【详解】解:点A与B关于原点对称,点坐标为A点的坐标为(2,3).所以B选项是正确的.【点睛】本题主要考查了反比例函数图象的中心对称性,要求同学们要熟练掌握.5、B【分析】根据传播规则结合经过两轮转发后共有111个人参与了宣传活动,即可得出关于n的一元二次方程,解之取其正值即可得出结论.【详解】解:依题意,得:1+n+n2=111,解得:n1=10,n2=﹣11(不合题意,舍去).故选:B.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.6、C【分析】根据题意和函数图象中的数据,利用二次函数的性质可以判断各个小题中的结论是否正确,从而可以解答本题.【详解】∵抛物线y=ax2+bx+c(a≠1)与x轴交于点(﹣3,1),其对称轴为直线x,∴抛物线y=ax2+bx+c(a≠1)与x轴交于点(﹣3,1)和(2,1),且,∴a=b,由图象知:a<1,c>1,b<1,∴abc>1,故结论①正确;∵抛物线y=ax2+bx+c(a≠1)与x轴交于点(﹣3,1),∴9a﹣3b+c=1.∵a=b,∴c=﹣6a,∴3a+c=﹣3a>1,故结论②正确;∵当x时,y随x的增大而增大;当x<1时,y随x的增大而减小,故结论③错误;∵抛物线y=ax2+bx+c(a≠1)与x轴交于点(﹣3,1)和(2,1),∴y=ax2+bx+c=a(x+3)(x﹣2).∵m,n(m<n)为方程a(x+3)(x﹣2)+3=1的两个根,∴m,n(m<n)为方程a(x+3)(x﹣2)=﹣3的两个根,∴m,n(m<n)为函数y=a(x+3)(x﹣2)与直线y=﹣3的两个交点的横坐标,结合图象得:m<﹣3且n>2,故结论④成立;∵当x时,y1,∴1.故结论⑤正确.故选:C.【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠1),二次项系数a决定抛物线的开口方向和大小:当a>1时,抛物线向上开口;当a<1时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>1),对称轴在y轴左;当a与b异号时(即ab<1),对称轴在y轴右;常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(1,c);抛物线与x轴交点个数由△决定:△=b2﹣4ac>1时,抛物线与x轴有2个交点;△=b2﹣4ac=1时,抛物线与x轴有1个交点;△=b2﹣4ac<1时,抛物线与x轴没有交点.7、A【分析】分式值为零的条件是分子等于零且分母不等于零,据此求解即可.【详解】解:∵分式的值为1,
∴x-2=1且x+4≠1.
解得:x=2.
故选:A.【点睛】本题主要考查的是分式值为零的条件,熟练掌握分式值为零的条件是解题的关键.8、C【分析】根据轴对称和中心对称图形的概念可判别.【详解】(A)既不是轴对称也不是中心对称;(B)是轴对称但不是中心对称;(C)是轴对称和中心对称;(D)是中心对称但不是轴对称故选:C9、C【分析】首先根据特殊角的三角函数值求出∠C,∠A的度数,然后根据三角形的内角和公式求出∠B的大小.【详解】∵,,∴∠C=30°,∠A=30°,∴∠B=180°﹣30°﹣30°=120°.故选C.【点睛】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值以及三角形的内角和公式.10、A【分析】根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合求解.【详解】B既是轴对称图形,又是中心对称图形;C只是轴对称图形;D既不是轴对称图形也不是中心对称图形,只有A符合.故选A.11、D【分析】由二次函数的图象可知,再根据对称轴为x=-1,得出b=2a<0,进而判断①,当x=-2时可判断②正确,然后根据抛物线的对称性以及增减性可判断③,再根据方程的根与抛物线与x交点的关系可判断④.【详解】解:∵抛物线开口向下,交y轴正半轴∴∵抛物线对称轴为x=-1,∴b=2a<0∴①正确;当x=-2时,位于y轴的正半轴故②正确;点的对称点为∵当时,抛物线为增函数,∴③正确;若当时方程有实数根,则需与x轴有交点则二次函数向下平移的距离即为t的取值范围,则的取值范围是,④正确.故选:D.【点睛】本题考查的知识点是二次函数图象及其性质,熟悉二次函数的图象上点的坐标特征以及求顶点坐标的公式是解此题额关键.12、B【分析】根据两个相似多边形的面积比为16:9,面积之比等于相似比的平方.【详解】根据题意得:=.即这两个相似多边形的相似比为4:1.故选:B.【点睛】本题考查了相似多边形的性质.相似多边形对应边之比、周长之比等于相似比,而面积之比等于相似比的平方.二、填空题(每题4分,共24分)13、【解析】二次函数(a≠0)的顶点坐标是(h,k).【详解】解:根据二次函数的顶点式方程知,该函数的顶点坐标是:(1,2).故答案为:(1,2).【点睛】本题考查了二次函数的性质和二次函数的三种形式,解答该题时,需熟悉二次函数的顶点式方程中的h,k所表示的意义.14、(2,0).【分析】已知条件的解析式是抛物线的顶点式,根据顶点式的坐标特点,直接写出顶点坐标.【详解】解:∵抛物线解析式为y=(x﹣2)2,∴二次函数图象的顶点坐标是(2,0).故答案为(2,0).【点睛】本题的考点是二次函数的性质.方法是根据顶点式的坐标特点写出答案.15、1【分析】根据同一时刻物高与影长成正比即可得出结论.【详解】解:设这栋楼的高度为hm,∵在某一时刻,测得一根高为1.8m的竹竿的影长为3m,同时测得一栋楼的影长为60m,∴,解得h=1(m).故答案为1.【点睛】本题考查的是相似三角形的应用,熟知同一时刻物高与影长成正比是解答此题的关键.16、.【详解】解:∵BC=2,∴AB==3∴AC=故答案为:.17、11.2【分析】延长AB和DC相交于点E,根据勾股定理,可得CE,BE的长,根据正切函数,可得AE的长,再根据线段的和差,可得答案.【详解】解:如图,延长AB和DC相交于点E,
由斜坡轨道BC的坡度为i=1:1,得
BE:CE=1:1.
设BE=x米,CE=1x米,
在Rt△BCE中,由勾股定理,得
BE1+CE1=BC1,
即x1+(1x)1=(11)1,
解得x=11,
即BE=11米,CE=12米,
∴DE=DC+CE=8+12=31(米),
由tan36°≈0.73,得tanD=≈0.73,
∴AE≈0.73×31=13.36(米).
∴AB=AE-BE=13.36-11=11.36≈11.2(米).
故答案为:11.2.【点睛】本题考查了解直角三角形的应用,作出辅助线构造直角三角形,利用勾股定理得出CE,BE的长度是解题关键.18、3cm【分析】根据三角形内角和定理求出∠BAC,根据线段垂直平分线性质求出,求出,求出∠EAC,根据含30°角的直角三角形的性质求解即可.【详解】∵在△ABC中,∵垂直平分,故答案为:3cm.【点睛】本题考查了三角形的边长问题,掌握三角形内角和定理、线段垂直平分线的性质、含30°角的直角三角形的性质是解题的关键.三、解答题(共78分)19、①证明见解析;(2)S菱形CODP=24.【解析】①根据DP∥AC,CP∥BD,即可证出四边形CODP是平行四边形,由矩形的性质得出OC=OD,即可得出结论;②利用S△COD=12S菱形CODP,先求出S△COD,即可得【详解】证明:①∵DP∥AC,CP∥BD∴四边形CODP是平行四边形,∵四边形ABCD是矩形,∴BD=AC,OD=12BD,OC=12∴OD=OC,∴四边形CODP是菱形.②∵AD=6,AC=10∴DC=AC2∵AO=CO,∴S△COD=12S△ADC=12×12∵四边形CODP是菱形,∴S△COD=12S菱形CODP=12∴S菱形CODP=24【点睛】本题考查了矩形性质和菱形的判定,解题关键是熟练掌握菱形的判定方法,由矩形的性质得出OC=OD.20、(1)x1=1+,x2=1﹣;(2)x1=﹣2.5,x2=1【分析】(1)先求出b2﹣4ac的值,再代入公式求出即可;(2)先分解因式,即可得出两个一元一次方程,求出方程的解即可.【详解】x2﹣6x﹣6=0,∵a=1,b=-6,c=-6,∴b2﹣4ac=(﹣6)2﹣4×1×(﹣6)=60,x=x1=1+,x2=1﹣;(2)2x2﹣x﹣15=0,(2x+5)(x﹣1)=0,2x+5=0,x﹣1=0,x1=﹣2.5,x2=1.【点睛】此题考查一元二次方程的解法,根据每个方程的特点选择适合的方法是关键,由此才能使计算更简便.21、(1)见解析;(2).【分析】(1)连接OP,则OP⊥PQ,然后证明OP//NQ即可.(2)连接MP,在Rt△MNP中,利用三角函数求得∠MNP的度数,即可求得∠PNQ的值,然后在Rt△PNQ中利用三角函数即可求解.【详解】(1)证明:连接OP,∵直线PQ与⊙O相切于P点,∴OP⊥PQ,即∠OPQ=90°,∵OP=ON,∴∠OPN=∠ONP.又∵NP平分∠MNQ,∴∠OPN=∠PNQ.∴OP//NQ.∴∠NQP=180°-∠OPQ=90°,∴NQ⊥PQ.(2)连接MP,∵MN是直径,∴∠MPN=90°.∴,∴∠MNP=30°.∴∠PNQ=30°.∴在Rt△PNQ中,NQ=NP•cos30°=.【点睛】本题考查了切线的性质,解直角三角形,正确添加辅助线,灵活运用相关知识是解题的关键.22、(1)见解析;(2)游戏是公平的,理由见解析【分析】(1)利用列表法或画树状图可得出所有可能的结果;
(2)利用概率公式计算出小明胜的概率,小红胜的概率,从而可判断这个游戏的公平性.【详解】解:(1)点的坐标共12个,如下表:01230\1\2\3\(2)游戏公平,理由如下:由列表可知,点M在第一象限共有6种情况,∴小明获胜的概率为:,点M不在第一象限共有6种情况,∴小红获胜的概率为:.∴两人获胜的概率相等,故这个游戏是公平的.【点睛】本题考查了游戏的公平性:判断游戏公平性需要先计算每个事件的概率,然后比较概率的大小,概率相等就公平,否则就不公平.同时也考查了列表法与画树状图法.23、(1)AC=5,AD=5;(2)直线PC与⊙O相切【分析】(1)、连接BD,根据AB为直径,则∠ACB=∠ADB=90°,根据Rt△ABC的勾股定理求出AC的长度,根据CD平分∠ACB得出Rt△ABD是等腰直角三角形,从而得出AD的长度;(2)、连接OC,根据OA=OC得出∠CAO=∠OCA,根据PC=PE得出∠PCE=∠PEC,然后结合CD平分∠ACB得出∠ACE=∠ECB,从而得出∠PCB=∠ACO,根据∠ACB=90°得出∠OCP=90°,从而说明切线.【详解】解:(1)、①如图,连接BD,∵AB是直径∴∠ACB=∠ADB=90°,在RT△ABC中,AC=②∵CD平分∠ACB,∴AD=BD,∴Rt△ABD是直角等腰三角形∴AD=AB=×10=5cm;(2)、直线PC与⊙O相切,理由:连接OC,∵OC=OA∴∠CAO=∠OCA∵PC=PE∴∠PCE=∠PEC,∵∠PEC=∠CAE+∠ACE∵CD平分∠ACB∴∠ACE=∠ECB∴∠PCB=∠ACO∵∠ACB=90°,∴∠OCP=∠OCB+∠PCB=∠ACO+∠OCB=∠ACB=90°,OC⊥PC,∴直线PC与⊙O相切.考点:(1)、勾股定理;(2)、直线与圆的位置关系.24、(1),顶点的坐标为(1,-4);(2)①,;②.【分析】(1)把坐标代入求出解析式,再化为顶点式即可求解;(2)①由对称性可表示出P’的坐标,再由P和P’都在抛物线上,可得到m的方程,即可求出m的值;②由点P’在第二象限,可求出t的取值,利用两点间的距离公式可用t表示,再由带你P’在抛物线上,可消去m,整理得到关于t的二次函数,利用二次函数的性质即可求出最小值时t的值,则可求出m的值.【详解】(1)∵抛物线经过点,∴,解得,∴抛物线的解析式为.∵,∴顶点的坐标为.(2)①由点在抛物线上,有.∵关于原点的对称点为,有.∴,即,∴,解得,.②由题意知在第二象限,∴,,即,.则在第四象限.∵抛物线的顶点坐标为,∴.过点作轴,为垂足,则.∵,,∴,.当点和不重合时,在中,.当点和重合时,,,符合上式.∴,即.记,则,∴当时,取得最小值.把代入,得,解得,,由,可知不符合题意
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 我国公益事业发展中公益物资需求特点分析
- 初中体育教学在新课改的体能训练策略
- 医学基础知识生理学课件
- 量子机器学习算法行业研究与商业机会挖掘
- 大学生软件工程专业职业规划指南
- 体育营销精髓
- 电容器与显示器控制电路解读
- 时尚新品发布汇
- 季度销售报告
- 创新办公理念下的零压空间设计实践
- 智慧树知到《中国历史地理(北京大学)》2025章节测试附答案
- 如何经营管理一家酒店
- 安全员晋升述职报告
- 教育行业的未来趋势全方位的性教育服务模式
- 《房地产价值评估》课件
- 高压电力电缆保护方案
- DBJ33T 1271-2022 建筑施工高处作业吊篮安全技术规程
- 古诗《乐游原》课件
- 规划设计框架合同模板
- 安全心理学-应激及事故创伤的心理救援
- 生命安全与救援学习通超星期末考试答案章节答案2024年
评论
0/150
提交评论