2022-2023学年鹤壁市重点中学数学九上期末监测模拟试题含解析_第1页
2022-2023学年鹤壁市重点中学数学九上期末监测模拟试题含解析_第2页
2022-2023学年鹤壁市重点中学数学九上期末监测模拟试题含解析_第3页
2022-2023学年鹤壁市重点中学数学九上期末监测模拟试题含解析_第4页
2022-2023学年鹤壁市重点中学数学九上期末监测模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图,在⊙O中,已知∠OAB=22.5°,则∠C的度数为()A.135° B.122.5° C.115.5° D.112.5°2.已知x2-2x=8,则3x2-6x-18的值为(

)A.54

B.6

C.-10

D.-183.如图,在中,所对的圆周角,若为上一点,,则的度数为()A.30° B.45° C.55° D.60°4.在平面直角坐标系中,将抛物线y=2(x﹣1)2+1先向左平移2个单位,再向上平移3个单位,则平移后抛物线的表达式是()A.y=2(x+1)2+4 B.y=2(x﹣1)2+4C.y=2(x+2)2+4 D.y=2(x﹣3)2+45.如图所示,下列条件中能单独判断△ABC∽△ACD的个数是()个.①∠ABC=∠ACD;②∠ADC=∠ACB;③=;④AC2=AD•ABA.1 B.2 C.3 D.46.二次函数的图象如图所示,则一次函数与反比例函数在同一坐标系内的图象大致为()A. B. C. D.7.如图,在平面直角坐标系中,半径为2的圆P的圆心P的坐标为(﹣3,0),将圆P沿x轴的正方向平移,使得圆P与y轴相切,则平移的距离为()A.1 B.3 C.5 D.1或58.若关于的一元二次方程有两个相等的根,则的值为()A. B. C.或 D.或9.下列命题正确的是()A.有意义的取值范围是.B.一组数据的方差越大,这组数据波动性越大.C.若,则的补角为.D.布袋中有除颜色以外完全相同的个黄球和个白球,从布袋中随机摸出一个球是白球的概率为10.三角形两边长分别是和,第三边长是一元二次方程的一个实数根,则该三角形的面积是()A. B. C.或 D.或二、填空题(每小题3分,共24分)11.在一个不透明的袋子中装有个除颜色外完全相同的小球,其中绿球个,红球个,摸出一个球放回,混合均匀后再摸出一个球,两次都摸到红球的概率是___________.12.如图△ABC中,∠C=90°,AC=8cm,AB的垂直平分线MN交AC于D,连接BD,若cos∠BDC=,则BC的长为_____.13.抛物线y=x2﹣4x+3与x轴两个交点之间的距离为_____.14.一只昆虫在如图所示的树枝上寻觅食物,假定昆虫在每个岔路口都会随机选择一条路径,则它获取食物的概率是.15.因式分解:_______;16.一布袋里装有4个红球、5个黄球、6个黑球,这些球除颜色外其余都相同,那么从这个布袋里摸出一个黄球的概率为__________.17.当a=____时,关于x的方程式为一元二次方程18.如图,一小球沿与地面成一定角度的方向飞出,小球的飞行路线是一条抛物线,如果不考虑空气阻力,小球的飞行高度y(单位:m)与飞行时间x(单位:s)之间具有函数关系y=﹣5x2+20x,在飞行过程中,当小球的行高度为15m时,则飞行时间是_____.三、解答题(共66分)19.(10分)(1)解方程:(配方法)(2)已知二次函数:与轴只有一个交点,求此交点坐标.20.(6分)随着技术的发展进步,某公司2018年采用的新型原料生产产品.这种新型原料的用量y(吨)与月份x之间的关系如图1所示,每吨新型原料所生产的产品的售价z(万元)与月份x之间的关系如图2所示.已知将每吨这种新型原料加工成的产品的成本为20万元.(1)求出该公司这种新型原料的用量y(吨)与月份x之间的函数关系式;(2)若该公司利用新型原料所生产的产品当月都全部销售,求哪个月利润最大,最大利润是多少?21.(6分)已知函数,(m,n,k为常数且≠0)(1)若函数的图像经过点A(2,5),B(-1,3)两个点中的其中一个点,求该函数的表达式.(2)若函数,的图像始终经过同一个定点M.①求点M的坐标和k的取值②若m≤2,当-1≤x≤2时,总有≤,求m+n的取值范围.22.(8分)如图,C地在B地的正东方向,因有大山阻隔,由B地到C地需绕行A地,已知A地位于B地北偏东53°方向,距离B地516千米,C地位于A地南偏东45°方向.现打算打通穿山隧道,建成两地直达高铁,求建成高铁后从B地前往C地的路程.(结果精确到1千米)(参考数据:sin53°=,cos53°=,tan53°=)23.(8分)已知等边△ABC,点D为BC上一点,连接AD.图1图2(1)若点E是AC上一点,且CE=BD,连接BE,BE与AD的交点为点P,在图(1)中根据题意补全图形,直接写出∠APE的大小;(2)将AD绕点A逆时针旋转120°,得到AF,连接BF交AC于点Q,在图(2)中根据题意补全图形,用等式表示线段AQ和CD的数量关系,并证明.24.(8分)商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施.经调查发现,每件商品每降价1元,商场平均每天可多售出2件.(1)若某天该商品每件降价3元,当天可获利多少元?(2)设每件商品降价x元,则商场日销售量增加____件,每件商品,盈利______元(用含x的代数式表示);(3)在上述销售正常情况下,每件商品降价多少元时,商场日盈利可达到2000元?25.(10分)如图,已知EC∥AB,∠EDA=∠ABF.(1)求证:四边形ABCD是平行四边形;(2)求证:=OE•OF.26.(10分)已知抛物线yx2mx2m4(m>0).(1)证明:该抛物线与x轴总有两个不同的交点;(2)设该抛物线与x轴的两个交点分别为A,B(点A在点B的右侧),与y轴交于点C,A,B,三点都在圆P上.①若已知B(-3,0),抛物线上存在一点M使△ABM的面积为15,求点M的坐标;②试判断:不论m取任何正数,圆P是否经过y轴上某个定点?若是,求出该定点的坐标,若不是,说明理由.

参考答案一、选择题(每小题3分,共30分)1、D【解析】分析:∵OA=OB,∴∠OAB=∠OBC=22.5°.∴∠AOB=180°﹣22.5°﹣22.5°=135°.如图,在⊙O取点D,使点D与点O在AB的同侧.则.∵∠C与∠D是圆内接四边形的对角,∴∠C=180°﹣∠D=112.5°.故选D.2、B【解析】所求式子前两项提取3变形后,将已知等式变形后代入计算即可求出值.【详解】∵x2−2x=8,∴3x2−1x−18=3(x2−2x)−18=24−18=1.故选:B.【点睛】此题考查了代数式求值,利用了整体代入的思想,是一道基本题型.3、B【解析】根据圆心角与圆周角关系定理求出∠AOB的度数,进而由角的和差求得结果.【详解】解:∵∠ACB=50°,∴∠AOB=2∠ACB=100°,∵∠AOP=55°,∴∠POB=45°,故选:B.【点睛】本题是圆的一个计算题,主要考查了在同圆或等圆中,同弧或等弧所对的圆心角等于它所对的圆周角的2信倍.4、A【分析】只需确定原抛物线解析式的顶点坐标平移后的对应点坐标即可.【详解】解:原抛物线y=2(x﹣1)2+1的顶点为(1,1),先向左平移2个单位,再向上平移3个单位,新顶点为(﹣1,4).即所得抛物线的顶点坐标是(﹣1,4).所以,平移后抛物线的表达式是y=2(x+1)2+4,故选:A.【点睛】本题主要考查了二次函数图像的平移,抛物线的解析式为顶点式时,求出顶点平移后的对应点坐标,可得平移后抛物线的解析式,熟练掌握二次函数图像的平移规律是解题的关键.5、C【分析】由图可知△ABC与△ACD中∠A为公共角,所以只要再找一组角相等,或一组对应边成比例即可解答.【详解】有三个①∠ABC=∠ACD,再加上∠A为公共角,可以根据有两组角对应相等的两个三角形相似来判定;②∠ADC=∠ACB,再加上∠A为公共角,可以根据有两组角对应相等的两个三角形相似来判定;③中∠A不是已知的比例线段的夹角,不正确④可以根据两组对应边的比相等且相应的夹角相等的两个三角形相似来判定;故选C【点睛】本题考查相似三角形的判定定理,熟练掌握判定定理是解题的关键6、D【分析】根据抛物线的图像,判断出的符号,从而确定一次函数、反比例函数的图像的位置即可.【详解】解:由抛物线的图像可知:横坐标为1的点,即在第四象限,因此;∴双曲线的图像分布在二、四象限;由于抛物线开口向上,∴,∵对称轴为直线,∴;∵抛物线与轴有两个交点,∴;∴直线经过一、二、四象限;故选:.【点睛】本题主要考查二次函数,一次函数以及反比例函数的图象与解析式的系数关系,熟练掌握函数解析式的系数对图像的影响,是解题的关键.7、D【分析】分圆P在y轴的左侧与y轴相切、圆P在y轴的右侧与y轴相切两种情况,根据切线的判定定理解答.【详解】当圆P在y轴的左侧与y轴相切时,平移的距离为3-2=1,当圆P在y轴的右侧与y轴相切时,平移的距离为3+2=5,故选D.【点睛】本题考查的是切线的判定、坐标与图形的变化-平移问题,掌握切线的判定定理是解题的关键,解答时,注意分情况讨论思想的应用.8、B【分析】把化为一元二次方程的一般形式,根据一元二次方程的判别式列方程求出b值即可.【详解】∵,∴x2+(b-1)x=0,∵一元二次方程有两个相等的根,∴(b-1)2-4×1×0=0,解得:b=1,故选:B.【点睛】本题考查一元二次方程根的判别式,对于一元二次方程ax2+bx+c=0(a≠0),根的判别式△=b2-4ac,当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.熟练掌握一元二次方程根的判别式是解题关键.9、B【分析】分别分析各选项的题设是否能推出结论,即可得到答案.【详解】解:A.有意义的取值范围是,故选项A命题错误;B.一组数据的方差越大,这组数据波动性越大,故选项B命题正确;C.若,则的补角为,故选项C命题错误;D.布袋中有除颜色以外完全相同的个黄球和个白球,从布袋中随机摸出一个球是白球的概率为,故选项D命题错误;故答案为B.【点睛】本题考查了命题真假的判断,掌握分析各选项的题设能否退出结论的知识点是解答本题的关键.10、D【分析】先利用因式分解法解方程得到所以,,再分类讨论:当第三边长为6时,如图,在中,,,作,则,利用勾股定理计算出,接着计算三角形面积公式;当第三边长为10时,利用勾股定理的逆定理可判断此三角形为直角三角形,然后根据三角形面积公式计算三角形面积.【详解】解:,或,所以,,I.当第三边长为6时,如图,在中,,,作,则,,所以该三角形的面积;II.当第三边长为10时,由于,此三角形为直角三角形,所以该三角形的面积,综上所述:该三角形的面积为24或.故选:D.【点睛】本题考查的是利用因式分解法解一元二次方程,等腰三角形的性质,勾股定理及其逆定理,解答此题时要注意分类讨论,不要漏解.二、填空题(每小题3分,共24分)11、【分析】首先根据题意画出树状图,由树状图求得所有等可能的结果与两次都摸到红球的情况,然后利用概率公式求解即可求得答案.注意此题属于放回实验.【详解】解:画树状图得:∵共有9种等可能的结果,两次都摸到红球的只有4种情况,

∴两次都摸到红球的概率是:.

故答案为.【点睛】此题考查的是用列表法或树状图法求概率的知识.正确的列出树状图是解决问题的关键.12、4【解析】试题解析:∵可∴设DC=3x,BD=5x,又∵MN是线段AB的垂直平分线,∴AD=DB=5x,又∵AC=8cm,∴3x+5x=8,解得,x=1,在Rt△BDC中,CD=3cm,DB=5cm,故答案为:4cm.13、2.【解析】令y=0,可以求得相应的x的值,从而可以求得抛物线与x轴的交点坐标,进而求得抛物线y=x2﹣4x+3与x轴两个交点之间的距离.【详解】∵抛物线y=x2﹣4x+3=(x﹣3)(x﹣2),∴当y=0时,0=(x﹣3)(x﹣2),解得:x2=3,x2=2.∵3﹣2=2,∴抛物线y=x2﹣4x+3与x轴两个交点之间的距离为2.故答案为:2.【点睛】本题考查了抛物线与x轴的交点,解答本题的关键是明确题意,利用二次函数的性质解答.14、.【详解】解:根据树状图,蚂蚁获取食物的概率是=.故答案为.考点:列表法与树状图法.15、(a-b)(a-b+1)【解析】原式变形后,提取公因式即可得到结果.【详解】解:原式=(a-b)2+(a-b)=(a-b)(a-b+1),

故答案为:(a-b)(a-b+1)【点睛】此题考查了因式分解-提公因式法,熟练掌握提取公因式的方法是解本题的关键.16、【分析】由于每个球被摸到的机会是均等的,故可用概率公式解答.【详解】解:∵布袋里装有4个红球、5个黄球、6个黑球,∴P(摸到黄球)=;故答案为:.【点睛】此题考查了概率公式,要明确:如果在全部可能出现的基本事件范围内构成事件A的基本事件有a个,不构成事件A的事件有b个,则出现事件A的概率为:P(A)=.17、≠±1【分析】方程是一元二次方程的条件是二次项次数不等于0,据此即可求得a的范围.【详解】根据题意得:a1-4≠0,解得:a≠±1.故答案是:≠±1.【点睛】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是1.18、1s或3s【解析】根据题意可以得到15=﹣5x2+20x,然后求出x的值,即可解答本题.【详解】∵y=﹣5x2+20x,∴当y=15时,15=﹣5x2+20x,得x1=1,x2=3,故答案为1s或3s.【点睛】本题考查二次函数的应用、一元二次方程的应用,解答本题的关键是明确题意,利用二次函数的性质和一元二次方程的知识解答.三、解答题(共66分)19、(1)(2),交点坐标为【分析】(1)把常数项移到方程的右边,两边加上一次项系数的一半的平方,进行配方,再用直接开平方的方法解方程即可,(2)由二次函数的定义得到:再利用求解的值,最后求解交点的坐标即可.【详解】解:(1),(2)二次函数:与轴只有一个交点,这个交点为抛物线的顶点,顶点坐标为:即此交点的坐标为:【点睛】本题考查了解一元二次方程的配方法,二次函数与轴的交点坐标问题,掌握相关知识是解题的关键.20、(1);(2)四月份利润最大,最大为1920元【分析】(1)根据图象利用待定系数法确定函数的解析式即可;(2)配方后确定最值即可.【详解】解:(1)1﹣6月份是一次函数,设y=kx+b,把点(1,50),(6,100)代入,得:,解得:,∴;(2)设利润为w元,当7≤x≤12时,w=100×35=3500元.当1≤x≤6时,w=(x﹣20)y=﹣30x2+240x+1440=﹣30(x﹣4)2+1920,故当x=4时,w取得最大值1920,即四月份利润最大,最大为1920元.【点睛】本题考查了二次函数的实际问题中最大利润问题,解题的关键是求出函数解析式,熟悉二次函数的性质.21、(1);(2)①M(2,3),k=3;②【分析】(1)将两点代入解析式即可得出结果;(2)①二次函数过某定点,则函数表达式与字母系数无关,以此解决问题;②根据二次函数的性质解题【详解】解:(1)①若函数图象经过点A(2,5),将A(2,5)代入得,不成立②若函数图象经过点B(-1,3),将B(-1,3)代入得,解得.∴.(2)①过定点M,与m无关,故,代入,得点M为(2,3),也过点M,代入得,解得k=3.②在时,.,则,∴,即.∵,∴,∴,,∴.【点睛】此题考查含字母系数的二次函数综合题,掌握二次函数的图像与性质是解题的基础.22、建成高铁后从B地前往C地的路程约为722千米.【分析】作AD⊥BC于D,分别根据正弦、余弦的定义求出BD、AD,再根据等腰直角三角形的性质求出CD的长,最后计算即可.【详解】解:如图:作AD⊥BC于D,在Rt△ADB中,cos∠DAB=,sin∠DAB=,∴AD=AB•cos∠DAB=516×=309.6,BD=AB•sin∠DAB=516×=412.8,在Rt△ADC中,∠DAC=45°,∴CD=AD=309.6,∴BC=BD+CD≈722,答:建成高铁后从B地前往C地的路程约为722千米.【点睛】本题考查了方向角问题,掌握方向角的概念和熟记锐角三角函数的定义是解答本题的关键.23、(1)补全图形见解析.∠APE=60°;(2)补全图形见解析.,证明见解析.【分析】(1)根据题意,按照要求补全图形即可;(2)先补全图形,然后首先证明△ABD≌△BEC得出∠BAD=∠CBE,之后通过一系列证明得出△AQF≌△EQB,最后进一步从而得出即可.【详解】(1)补全图形如下,其中∠APE=60°,(2)补全图形.证明:在△ABD和△BEC中,∴△ABD≌△BEC(SAS)∴∠BAD=∠CBE.∵∠APE是△ABP的一个外角,∴∠APE=∠BAD+∠ABP=∠CBE+∠ABP=∠ABC=60°.∵AF是由AD绕点A逆时针旋转120°得到,∴AF=AD,∠DAF=120°.∵∠APE=60°,∴∠APE+∠DAP=180°.∴AF∥BE∴∠1=∠2∵△ABD≌△BEC,∴AD=BE.∴AF=BE.在△AQF和△EQB中,∴△AQF≌△EQB(AAS)∴AQ=QE∴∵AE=AC-CE,CD=BC-BD,且AE=BC,CD=BD.∴AE=CD..∴【点睛】本题主要考查了全等三角形的综合运用,熟练掌握相关概念是解题关键.24、(1)若某天该商品每件降价3元,当天可获利1692元;(2)2x;50﹣x.(3)每件商品降价1元时,商场日盈利可达到2000元.【分析】(1)根据“盈利=单件利润×销售数量”即可得出结论;

(2)根据“每件商品每降价1元,商场平均每天可多售出2件”结合每件商品降价x元,即可找出日销售量增加的件数,再根据原来没见盈利50元,即可得出降价后的每件盈利额;

(3)根据“盈利=单件利润×销售数量”即可列出关于x的一元二次方程,解之即可得出x的值,再根据尽快减少库存即可确定x的值.【详解】(1)当天盈利:(50-3)×(30+2×3)=1692(元).

答:若某天该商品每件降价3元,当天可获利1692元.

(2)∵每件商品每降价1元,商场平均每天可多售出2件,

∴设每件商品降价x元,则商场日销售量增加2x件,每件商品,盈利(50-x)元.

故答案为2x;50-x.

(3)根据题意,得:(50-x)×(30+2x)=2000,

整理,得:x2-35x+10=0,

解得:x1=10,x2=1,

∵商城要尽快减少库存,

∴x=1.

答:每件商品降价1元时,商场日盈利可达到2000元.【点睛】考查了一元二次方程的应用,解题的关键是根据题意找出数量关系列出一元二次方程(或算式).25、(1)证明见解析;(2)证明见

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论