版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.圆内接正三角形、正方形、正六边形的边长之比为()A.1:2:3 B.1:: C.::1 D.无法确定2.《代数学》中记载,形如的方程,求正数解的几何方法是:“如图1,先构造一个面积为的正方形,再以正方形的边长为一边向外构造四个面积为的矩形,得到大正方形的面积为,则该方程的正数解为.”小聪按此方法解关于的方程时,构造出如图2所示的图形,已知阴影部分的面积为36,则该方程的正数解为()A.6 B. C. D.3.中,,是边上的高,若,则等于()A. B.或 C. D.或4.若二次函数y=x2+4x+n的图象与x轴只有一个公共点,则实数n的值是()A.1 B.3 C.4 D.65.如图所示的几何体是由一些小立方块搭成的,则这个几何体的俯视图是()A. B. C. D.6.下列命题正确的是()A.有意义的取值范围是.B.一组数据的方差越大,这组数据波动性越大.C.若,则的补角为.D.布袋中有除颜色以外完全相同的个黄球和个白球,从布袋中随机摸出一个球是白球的概率为7.如图,双曲线的一个分支为()A.① B.② C.③ D.④8.用配方法解一元二次方程ax2+bx+c=0(a≠0),此方程可变形为()A. B.C. D.9.如图,EF过矩形ABCD对角线的交点O,且分别交AB、CD于E、F,矩形ABCD内的一个动点P落在阴影部分的概率是()A. B. C. D.10.设,下列变形正确的是()A. B. C. D.11.如图,CD⊥x轴,垂足为D,CO,CD分别交双曲线y=于点A,B,若OA=AC,△OCB的面积为6,则k的值为()A.2 B.4 C.6 D.812.袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球.下列事件是必然事件的是()A.摸出的三个球中至少有一个球是黑球B.摸出的三个球中至少有一个球是白球C.摸出的三个球中至少有两个球是黑球D.摸出的三个球中至少有两个球是白球二、填空题(每题4分,共24分)13.如图,抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(-2,4),B(1,1),则不等式ax2>bx+c的解集是_________.14.如图所示,已知:点,,.在内依次作等边三角形,使一边在轴上,另一个顶点在边上,作出的等边三角形分别是第1个,第2个,第3个,…,则第个等边三角形的周长等于.15.抛物线y=2x2+4x-1向右平移_______个单位,经过点P(4,5).16.如图,在△ABC中,∠ACB=90°,点G是△ABC的重心,且AG⊥CG,CG的延长线交AB于H.则S△AGH:S△ABC的值为____.17.如果方程x2+4x+n=0可以配方成(x+m)2=3,那么(n﹣m)2020=_____.18.□ABCD的两条对角线AC、BD相交于O,现从下列条件:①AC⊥BD②AB=BC③AC=BD④∠ABD=∠CBD中随机取一个作为条件,可推出□ABCD是菱形的概率是_________三、解答题(共78分)19.(8分)如图,在Rt△ABC中,∠ABC=90°,以AB为直径作⊙O,点D为⊙O上一点,且CD=CB,连接DO并延长交CB的延长线于点E,连接OC.(1)判断直线CD与⊙O的位置关系,并说明理由;(2)若BE=,DE=3,求⊙O的半径及AC的长.20.(8分)根据学习函数的经验,探究函数y=x2+ax﹣4|x+b|+4(b<0)的图象和性质:(1)下表给出了部分x,y的取值;xL﹣3﹣2﹣1012345LyL30﹣1030﹣103L由上表可知,a=,b=;(2)用你喜欢的方式在坐标系中画出函数y=x2+ax﹣4|x+b|+4的图象;(3)结合你所画的函数图象,写出该函数的一条性质;(4)若方程x2+ax﹣4|x+b|+4=x+m至少有3个不同的实数解,请直接写出m的取值范围.21.(8分)关于x的方程x2-4x+2m+2=0有实数根,且m为正整数,求m的值及此时方程的根.22.(10分)为进一步深化基教育课程改革,构建符合素质教育要求的学校课程体系,某学校自主开发了A书法、B阅读,C足球,D器乐四门校本选修课程供学生选择,每门课程被选到的机会均等.(1)学生小红计划选修两门课程,请写出所有可能的选法;(2)若学生小明和小刚各计划送修一门课程,则他们两人恰好选修同一门课程的概率为多少?23.(10分)一玩具厂去年生产某种玩具,成本为元/件,出厂价为元/件,年销售量为万件.今年计划通过适当增加成本来提高产品档次,以拓展市场.若今年这种玩具每件的成本比去年成本增加倍,今年这种玩具每件的出厂价比去年出厂价相应提高倍,则预计今年年销售量将比去年年销售量增加倍(本题中).用含的代数式表示,今年生产的这种玩具每件的成本为________元,今年生产的这种玩具每件的出厂价为________元.求今年这种玩具的每件利润元与之间的函数关系式.设今年这种玩具的年销售利润为万元,求当为何值时,今年的年销售利润最大?最大年销售利润是多少万元?注:年销售利润(每件玩具的出厂价-每件玩具的成本)年销售量.24.(10分)计算:2sin30°﹣(π﹣)0+|﹣1|+()﹣125.(12分)已知:△ABC内接于⊙O,过点A作直线EF.(1)如图甲,AB为直径,要使EF为⊙O的切线,还需添加的条件是(写出两种情况,不需要证明):①或②;(2)如图乙,AB是非直径的弦,若∠CAF=∠B,求证:EF是⊙O的切线.(3)如图乙,若EF是⊙O的切线,CA平分∠BAF,求证:OC⊥AB.26.中国古代有着辉煌的数学成就,《周髀算经》,《九章算术》,《海岛算经》,《孙子算经》等是我国古代数学的重要文献.(1)小聪想从这4部数学名著中随机选择1部阅读,则他选中《九章算术》的概率为;(2)某中学拟从这4部数学名著中选择2部作为“数学文化”校本课程学习内容,求恰好选中《九章算术》和《孙子算经》的概率.
参考答案一、选择题(每题4分,共48分)1、C【分析】根据题意画出图形,设出圆的半径,再由正多边形及直角三角形的性质求解即可.【详解】解:设圆的半径为R,如图(一),连接OB,过O作OD⊥BC于D,则∠OBC=30°,BD=OB•cos30°R,故BC=2BDR;如图(二),连接OB、OC,过O作OE⊥BC于E,则△OBE是等腰直角三角形,2BE2=OB2,即BE,故BCR;如图(三),连接OA、OB,过O作OG⊥AB,则△OAB是等边三角形,故AG=OA•cos60°R,AB=2AG=R,∴圆内接正三角形、正方形、正六边形的边长之比为R:R:R::1.故选:C.【点睛】本题主要考查了正多边形和圆,掌握正多边形和圆是解题的关键.2、B【分析】根据已知的数学模型,同理可得空白小正方形的边长为,先计算出大正方形的面积=阴影部分的面积+4个小正方形的面积,可得大正方形的边长,从而得结论.【详解】x2+6x+m=0,x2+6x=-m,∵阴影部分的面积为36,∴x2+6x=36,4x=6,x=,同理:先构造一个面积为x2的正方形,再以正方形的边长为一边向外构造四个面积为x的矩形,得到大正方形的面积为36+()2×4=36+9=45,则该方程的正数解为.故选:B.【点睛】此题考查了解一元二次方程的几何解法,用到的知识点是长方形、正方形的面积公式,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程.3、B【分析】根据题意画出图形,当△ABC中为锐角三角形或钝角三角形两种情况解答,结合已知条件可以推出△ABD∽△BCD,即可得出∠ABC的度数.【详解】(1)如图,当△ABC中为锐角三角形时,
∵BD⊥AC,∴△ABD∽△BCD,
∵∠A=30°,
∴∠ABD=∠C=60°,∠A=∠CBD=30°,
∴∠ABC=90°.
(2)如图,当△ABC中为钝角三角形时,
∵BD⊥AC,∴△ABD∽△BCD,
∵∠A=30°,
∴∠ABD=∠DCB=60°,∠A=∠DBC=30°,
∴∠ABC=30°.
故选择B.【点睛】本题考查了相似三角形的判定与性质,将三角形分锐角三角形和钝角三角形分别讨论是解题的关键.4、C【分析】二次函数y=x2+4x+n的图象与轴只有一个公共点,则,据此即可求得.【详解】∵,,,根据题意得:,解得:n=4,故选:C.【点睛】本题考查了抛物线与轴的交点,二次函数(a,b,c是常数,a≠0)的交点与一元二次方程根之间的关系.决定抛物线与轴的交点个数.>0时,抛物线与x轴有2个交点;时,抛物线与轴有1个交点;<0时,抛物线与轴没有交点.5、D【解析】试题分析:根据三视图中,从左边看得到的图形是左视图,因此从左边看第一层是两个小正方形,第二层左边一个小正方形,故选D考点:简单组合体的三视图6、B【分析】分别分析各选项的题设是否能推出结论,即可得到答案.【详解】解:A.有意义的取值范围是,故选项A命题错误;B.一组数据的方差越大,这组数据波动性越大,故选项B命题正确;C.若,则的补角为,故选项C命题错误;D.布袋中有除颜色以外完全相同的个黄球和个白球,从布袋中随机摸出一个球是白球的概率为,故选项D命题错误;故答案为B.【点睛】本题考查了命题真假的判断,掌握分析各选项的题设能否退出结论的知识点是解答本题的关键.7、D【解析】∵在中,k=8>0,∴它的两个分支分别位于第一、三象限,排除①②;又当=2时,=4,排除③;所以应该是④.故选D.8、A【解析】首先进行移项,然后把二次项系数化为1,再进行配方,方程左右两边同时加上一次项系数一半的平方,即可变形成左边是完全平方,右边是常数的形式.【详解】∵ax2+bx+c=0,∴ax2+bx=−c,∴x2+x=−,∴x2+x+=−+,∴(x+)2=.故选A.9、B【解析】根据矩形的性质,得△EBO≌△FDO,再由△AOB与△OBC同底等高,△AOB与△ABC同底且△AOB的高是△ABC高的得出结论.【详解】解:∵四边形为矩形,∴OB=OD=OA=OC,在△EBO与△FDO中,,∴△EBO≌△FDO,∴阴影部分的面积=S△AEO+S△EBO=S△AOB,∵△AOB与△ABC同底且△AOB的高是△ABC高的,∴S△AOB=S△OBC=S矩形ABCD.故选B.【点睛】本题考查了矩形的性质,矩形具有平行四边形的性质,又具有自己的特性,要注意运用矩形具备而一般平行四边形不具备的性质.10、D【分析】根据比例的性质逐个判断即可.【详解】解:由得,2a=3b,A、∵,∴2b=3a,故本选项不符合题意;
B、∵,∴3a=2b,故本选项不符合题意;
C、,故本选项不符合题意;
D、,故本选项符合题意;
故选:D.【点睛】本题考查了比例的性质,能熟记比例的性质是解此题的关键,如果,那么ad=bc.11、B【分析】设A(m,n),根据题意则C(2m,2n),根据系数k的几何意义,k=mn,△BOD面积为k,即可得到S△ODC=•2m•2n=2mn=2k,即可得到6+k=2k,解得k=1.【详解】设A(m,n),∵CD⊥x轴,垂足为D,OA=AC,∴C(2m,2n),∵点A,B在双曲线y=上,∴k=mn,∴S△ODC=×2m×2n=2mn=2k,∵△OCB的面积为6,△BOD面积为k,∴6+k=2k,解得k=1,故选:B.【点睛】本题考查了反比例系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|.12、A【分析】根据必然事件的概念:在一定条件下,必然发生的事件叫做必然事件分析判断即可.【详解】A、是必然事件;B、是随机事件,选项错误;C、是随机事件,选项错误;D、是随机事件,选项错误.故选A.二、填空题(每题4分,共24分)13、x<-2或x>1【分析】根据图形抛物线与直线的两个交点情况可知,不等式的解集为抛物线的图象在直线图象的上方对应的自变量的取值范围.【详解】如图所示:
∵抛物线与直线的两个交点坐标分别为,
∴二次函数图象在一次函数图象上方时,即不等式的解集为:或.
故答案为:或.【点睛】本题主要考查了二次函数与不等式组.解答此题时,利用了图象上的点的坐标特征来解不等式.14、【解析】∵OB=,OC=1,∴BC=2,∴∠OBC=30°,∠OCB=60°.而△AA1B1为等边三角形,∠A1AB1=60°,∴∠COA1=30°,则∠CA1O=90°.在Rt△CAA1中,AA1=OC=,同理得:B1A2=A1B1=,依此类推,第n个等边三角形的边长等于.第n个等边三角形的周长等于.15、3或7【分析】先化成顶点式,设向右平移个单位,再由平移规律求出平移后的抛物线解析式,再把点(4,5)代入新的抛物线解析式即可求出m的值.【详解】,设抛物线向右平移个单位,得到:,∵经过点(4,5),
∴,化简得:,∴
解得:或.
故答案为:或.【点睛】本题主要考查了函数图象的平移和一个点在图象上那么这个点就满足该图象的解析式,要求熟练掌握平移的规律:左加右减,上加下减,并用规律求函数解析式.16、1:6【分析】根据重心的性质得到,求得,根据CH为AB边上的中线,于是得到,从而得到结论.【详解】∵点G是△ABC的重心,∴,∴,∴,∵CH为AB边上的中线,∴,∴,∴,故答案为:.【点睛】本题考查了三角形的重心:三角形的重心是三角形三边中线的交点;重心到顶点的距离与重心到对边中点的距离之比为2:1.17、1【分析】已知配方方程转化成一般方程后求出m、n的值,即可得到结果.【详解】解:由(x+m)2=3,得:
x2+2mx+m2-3=0,
∴2m=4,m2-3=n,
∴m=2,n=1,
∴(n﹣m)2020=(1﹣2)2020=1,
故答案为:1.【点睛】此题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解本题的关键.18、【分析】根据菱形的判定方法直接就可得出推出菱形的概率.【详解】根据“对角线互相垂直的平行四边形是菱形”直接判断①符合题意;根据“一组邻边相等的平行四边形是菱形”可直接判断②符合题意;根据“对角线相等的平行四边形是矩形”,所以③不符合菱形的判定方法;,,BC=CD,是菱形,故④符合题意;推出菱形的概率为:.故答案为.【点睛】本题主要考查菱形的判定及概率,熟记菱形的判定方法是解题的关键,然后根据概率的求法直接得出答案.三、解答题(共78分)19、(1)DC是⊙O的切线,理由见解析;(2)半径为1,AC=【分析】(1)欲证明CD是切线,只要证明OD⊥CD,利用全等三角形的性质即可证明;
(2)设⊙O的半径为r.在Rt△OBE中,根据OE2=EB2+OB2,可得,推出r=1,可得OE=2,即有,可推出,则利用勾股定理和含有30°的直角三角形的性质,可求得OC=2,,再利用勾股定理求出即可解决问题;【详解】(1)证明:∵CB=CD,CO=CO,OB=OD,∴△OCB≌△OCD(SSS),∴∠ODC=∠OBC=90°,∴OD⊥DC,∴DC是⊙O的切线;(2)解:设⊙O的半径为r.在Rt△OBE中,∵OE2=EB2+OB2,∴,∴∴OE=3-1=2Rt△ABC中,∴∴Rt△BCO中,,Rt△ABC中,【点睛】本题考查直线与圆的位置关系、圆周角定理、勾股定理、锐角三角函数等知识,熟悉相关性质定理是解题的关键.20、(1)﹣1,﹣1;(1)详见解析;(3)函数关于x=1对称;(4)0<m<1.【分析】(1)将点(0,0)、(1,3)代入函数y=x1+ax﹣4|x+b|+4,得到关于a、b的一元二次方程,解方程组即可求得;(1)描点法画图即可;(3)根据图象即可得到函数关于x=1对称;(4)结合图象找,当x=﹣1时,y=﹣1;当x=1,y=3;则当0<m<1时,方程x1+ax﹣4|x+b|+4=x+m至少有3个不同的实数解.【详解】解:(1)将点(0,0)、(1,3)代入函数y=x1+ax﹣4|x+b|+4(b<0),得,解得a=﹣1,b=﹣1,故答案为﹣1,﹣1;(1)画出函数图象如图:(3)该函数的一条性质:函数关于x=1对称;(4)∵方程x1+ax﹣4|x+b|+4=x+m至少有3个不同的实数解∴二次函数y=x1+ax﹣4|x+b|+4的图像与一次函数y=x+m至少有三个交点,根据一次函数图像的变化趋势,∴当0<m<1时,方程x1+ax﹣4|x+b|+4=x+m至少有3个不同的实数解,故答案为0<m<1.【点睛】本题考查了二次函数的综合应用,熟练掌握并灵活运用是解题的关键.21、m=1,【分析】直接利用根的判别式得出m的取值范围,再由m为正整数进而求出m的值,然后再将m代入方程中解方程得出答案.【详解】解:∵关于x的方程x2-4x+2m+2=0有实数根∴解得又为正整数∴将代回方程中,得到x2-4x+4=0即求得方程的实数根为:.故答案为:,方程的实数根为:【点睛】此题主要考查了根的判别式,当时方程有两个不相等的实数根;当时方程有两个相等的实数根;时方程无实数根.22、(1)答案见解析;(2)【解析】分析:(1)直接列举出所有可能的结果即可.(2)画树状图展示所有16种等可能的结果数,再找出他们两人恰好选修同一门课程的结果数,然后根据概率公式求解.详解:(1)学生小红计划选修两门课程,她所有可能的选法有:A书法、B阅读;A书法、C足球;A书法、D器乐;B阅读,C足球;B阅读,D器乐;C足球,D器乐.共有6种等可能的结果数;(2)画树状图为:共有16种等可能的结果数,其中他们两人恰好选修同一门课程的结果数为4,所以他们两人恰好选修同一门课程的概率点睛:本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.23、10+7x12+6x【分析】(1)根据题意今年这种玩具每件的成本比去年成本增加0.7x倍,即为(10+10×0.7x)元/件;这种玩具每件的出厂价比去年出厂价相应提高0.5x倍,即为(12+12×0.5x)元/件;
(2)今年这种玩具的每件利润y等于每件的出厂价减去每件的成本价,即y=(12+6x)-(10+7x),然后整理即可;
(3)今年的年销售量为(2+2x)万件,再根据年销售利润=(每件玩具的出厂价-每件玩具的成本)×年销售量,得到w=2(1+x)(2-x),然后把它配成顶点式,利用二次函数的最值问题即可得到答案.【详解】⑴①10+7x②12+6x⑵y=(12+6x)-(10+7x)y=2-x⑶∵w=2(1+x)(2-x)=-2x2+2x+4∴w=-2(x-0.5)2+4.5∵-2<0,0<x≤11,∴w有最大值,∴当x=0.5时,w最大=4.5(万元).答:当x为0.5时,今年的年销售利润最大,最大年销售利润是4.5万元.【点睛】本题考查了二次函数的应用,解题的关键是根据题意列出方程进行求解.24、1+【解析】分析:直接利用特殊角的三角函数值以及零指数幂的性质和负指数幂的性质分别化简得出答案.详解:原式=2×-1+-1+2=1+.点睛:此题主要考查了实数运算,正确化简各数是解题关键.25、(1)①OA⊥EF;②∠FAC=∠B;(2)见解析;(3)见解析.【分析】(1)添加条件是:①OA⊥EF或∠FAC=∠B根据切线的判定和圆周角定理推出即可.(2)作直径AM,连接CM,推出∠M=∠B=∠EAC,求出∠FAC+∠CAM=90°,根据切线的判定推出即可.(3)由同圆的半径相等得到OA=OB,所以点O在AB的垂直平分线上,根据∠FAC=∠B,∠BAC=∠FAC,等量代换得到∠BAC=∠B,所以点C在AB的垂直平分线上,得到OC垂直平分AB.【详解】(1)①OA⊥EF②∠FAC=∠B,理由是:①∵OA⊥EF,OA是半径,∴EF是⊙O切线,②∵AB是⊙0直径,∴∠C=90
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 签订设备供货合同范例
- 铸造清包工合同模板
- 淘宝带装合同范例
- 骑手劳动合同范例
- 卖卖车合同范例
- 棚改项目合同范例
- 规范合同范例 软件
- 铜锭购销合同范例
- 车美合同范例
- 道路土方运输合同模板
- JT-T-1214-2018港口高杆灯技术要求
- 小罐茶行业分析报告
- 颅内感染的护理查房
- 高中数学-人教电子版课本
- 新生儿静脉留置针穿刺
- 外贸公司介绍
- 2024年度-银行不良清收技巧培训课件(学员版)
- MOOC 摄影艺术概论-浙江工商大学 中国大学慕课答案
- 2024年上海市杨浦区高三二模英语试卷及答案
- 中国电影改编的跨文化传播启示以中外电影《花木兰》对比分析为例
- 2024年全国法院检察院书记员招聘笔试参考题库附带答案详解
评论
0/150
提交评论