版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.一个不透明的布袋里装有8个只有颜色不同的球,其中2个红球,6个白球.从布袋里任意摸出1个球,则摸出的球是白球的概率为()A. B. C. D.2.如图,△OAB∽△OCD,OA:OC=3:2,∠A=α,∠C=β,△OAB与△OCD的面积分别是S1和S2,△OAB与△OCD的周长分别是C1和C2,则下列等式一定成立的是()A. B. C. D.3.袋中装有除颜色外其他完全相同的4个小球,其中3个红色,一个白色,从袋中任意地摸出两个球,这两个球颜色相同的概率是()A. B. C. D.4.如图,在△ABC中,点D、E分别在AB、AC上,DE∥BC.若AD=6,DB=3,则的值为()A. B. C. D.25.二次函数y=ax1+bx+c(a≠0)中的x与y的部分对应值如下表:x…﹣3﹣1﹣101134…y…1150﹣3﹣4﹣305…给出以下结论:(1)二次函数y=ax1+bx+c有最小值,最小值为﹣3;(1)当﹣<x<1时,y<0;(3)已知点A(x1,y1)、B(x1,y1)在函数的图象上,则当﹣1<x1<0,3<x1<4时,y1>y1.上述结论中正确的结论个数为()A.0 B.1 C.1 D.36.如图,在△ABC中,DE∥BC,若=,则的值为()A. B. C. D.7.已知反比例函数的图象经过点,小良说了四句话,其中正确的是()A.当时, B.函数的图象只在第一象限C.随的增大而增大 D.点不在此函数的图象上8.在数轴上表示不等式﹣2≤x<4,正确的是()A. B.C. D.9.下列说法正确的是()A.了解飞行员视力的达标率应使用抽样调查B.一组数据3,6,6,7,9的中位数是6C.从2000名学生中选200名学生进行抽样调查,样本容量为2000D.一组数据1,2,3,4,5的方差是1010.下列图案中既是中心对称图形,又是轴对称图形的是()A. B. C. D.二、填空题(每小题3分,共24分)11.已知某个正六边形的周长为,则这个正六边形的边心距是__________.12.圆锥的底面半径是1,侧面积是3π,则这个圆锥的侧面展开图的圆心角为________.13.如图,扇形OAB的圆心角为110°,C是上一点,则∠C=_____°.14.不透明布袋里有5个红球,4个白球,往布袋里再放入x个红球,y个白球,若从布袋里摸出白球的概率为,则y与x之间的关系式是_____.15.已知是关于的方程的一个根,则______.16.计算:_______.17.已知x=﹣1是方程x2+ax+4=0的一个根,则方程的另一个根为_____.18.已知某种礼炮的升空高度h(m)与飞行时间t(s)的关系是h=+20t+1,若此礼炮在升空到最高处时引爆,到引爆需要的时间为_____s.三、解答题(共66分)19.(10分)如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与BC相交于点N.连接BM,DN.(1)求证:四边形BMDN是菱形;(2)若AB=4,AD=8,求MD的长.20.(6分)已知关于的一元二次方程.(1)若此方程有两个实数根,求的最小整数值;(2)若此方程的两个实数根为,,且满足,求的值.21.(6分)《九章算术》是中国传统数学最重要的著作,在“勾股”章中有这样一个问题:“今有邑方二百步,各中开门,出东门十五步有木,问:出南门几步面见木?”用今天的话说,大意是:如图,DEFG是一座边长为200步(“步”是古代的长度单位)的正方形小城,东门H位于GD的中点,南门K位于ED的中点,出东门15步的A处有一树木,求出南门多少步恰好看到位于A处的树木(即点D在直线AC上)?请你计算KC的长为多少步.22.(8分)(1)计算:(2)解方程):23.(8分)如图,我国海监船在处发现正北方向处有一艘可疑船只,正沿南偏东方向航行,我海监船迅速沿北偏东方向去拦裁,经历小时刚好在处将可疑船只拦截,已知我海监船航行的速度是每小时海里,求可疑船只航行的距离.24.(8分)(问题呈现)阿基米德折弦定理:如图1,AB和BC是⊙O的两条弦(即折线ABC是圆的一条折弦),BC>AB,点M是的中点,则从M向BC所作垂线的垂足D是折弦ABC的中点,即CD=DB+BA.下面是运用“截长法”证明CD=DB+BA的部分证明过程.证明:如图2,在CD上截取CG=AB,连接MA、MB、MC和MG.∵M是的中点,∴MA=MC①又∵∠A=∠C②∴△MAB≌△MCG③∴MB=MG又∵MD⊥BC∴BD=DG∴AB+BD=CG+DG即CD=DB+BA根据证明过程,分别写出下列步骤的理由:①,②,③;(理解运用)如图1,AB、BC是⊙O的两条弦,AB=4,BC=6,点M是的中点,MD⊥BC于点D,则BD=;(变式探究)如图3,若点M是的中点,(问题呈现)中的其他条件不变,判断CD、DB、BA之间存在怎样的数量关系?并加以证明.(实践应用)根据你对阿基米德折弦定理的理解完成下列问题:如图4,BC是⊙O的直径,点A圆上一定点,点D圆上一动点,且满足∠DAC=45°,若AB=6,⊙O的半径为5,求AD长.25.(10分)2019年全国青少年禁毒知识竞赛开始以来,某市青少年学生踊跃参加,掀起了学习禁毒知识的热潮,禁毒知识竞赛的成绩分为四个等级:优秀,良好,及格,不及格.为了了解该市广大学生参加禁毒知识竞赛的成绩,抽取了部分学生的成绩,根据抽查结果,绘制了如下两幅不完整的统计图:(1)本次抽查的人数是;扇形统计图中不及格学生所占的圆心角的度数为;(2)补全条形统计图;(3)若某校有2000名学生,请你根据调查结果估计该校学生知识竞赛成绩为“优秀”和“良好”两个等级共有多少人?26.(10分)在平面直角坐标系中,将一块等腰直角三角板(△ABC)按如图所示放置,若AO=2,OC=1,∠ACB=90°.(1)直接写出点B的坐标是;(2)如果抛物线l:y=ax2﹣ax﹣2经过点B,试求抛物线l的解析式;(3)把△ABC绕着点C逆时针旋转90°后,顶点A的对应点A1是否在抛物线l上?为什么?(4)在x轴上方,抛物线l上是否存在一点P,使由点A,C,B,P构成的四边形为中心对称图形?若存在,求出点P的坐标;若不存在,请说明理由.
参考答案一、选择题(每小题3分,共30分)1、A【解析】用白球的个数除以球的总个数即为所求的概率.【详解】解:因为一共有8个球,白球有6个,所以从布袋里任意摸出1个球,摸到白球的概率为,故选:A.【点睛】本题考查了概率公式,用到的知识点为:概率等于所求情况数与总情况数之比.2、D【解析】A选项,在△OAB∽△OCD中,OB和CD不是对应边,因此它们的比值不一定等于相似比,所以A选项不一定成立;B选项,在△OAB∽△OCD中,∠A和∠C是对应角,因此,所以B选项不成立;C选项,因为相似三角形的面积比等于相似比的平方,所以C选项不成立;D选项,因为相似三角形的周长比等于相似比,所以D选项一定成立.故选D.3、A【分析】用树形图法确定所有情况和所需情况,然后用概率公式解答即可.【详解】解:画树状图如下:则总共有12种情况,其中有6种情况是两个球颜色相同的,故其概率为.故答案为A.【点睛】本题考查画树形图和概率公式,其中根据题意画出树形图是解答本题的关键.4、A【分析】先求出AB,由平行线分线段成比例定理得出比例式,即可得出结果.【详解】∵,
∴,
∵,
∴;
故选:A.【点睛】本题考查了平行线分线段成比例定理;熟记平行线分线段成比例定理是解决问题的关键.5、B【分析】根据表格的数据,以及二次函数的性质,即可对每个选项进行判断.【详解】解:(1)函数的对称轴为:x=1,最小值为﹣4,故错误,不符合题意;(1)从表格可以看出,当﹣<x<1时,y<0,符合题意;(3)﹣1<x1<0,3<x1<4时,x1离对称轴远,故错误,不符合题意;故选择:B.【点睛】本题考查了二次函数的最值,抛物线与x轴的交点,仔细分析表格数据,熟练掌握二次函数的性质是解题的关键.6、A【分析】根据平行线分线段成比例定理列出比例式,代入计算得到答案.【详解】解:∵=,∴,∵DE∥BC,∴,故选:A.【点睛】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.7、D【分析】利用待定系数法求出k,即可根据反比例函数的性质进行判断.【详解】解:∵反比例函数的图象经过点(3,2),∴k=2×3=6,∴,∴图象在一、三象限,在每个象限y随x的增大而减小,故A,B,C错误,∴点不在此函数的图象上,选项D正确;故选:D.【点睛】本题考查反比例函数图象上的点的特征,教育的关键是熟练掌握基本知识,属于中考常考题型.8、A【分析】根据不等式的解集在数轴上表示出来即可.【详解】解:在数轴上表示不等式﹣2≤x<4的解集为:故选:A.【点睛】此题主要考查不等式解集的表示,解题的关键是熟知不等式解集的表示方法.9、B【解析】选项A,了解飞行员视力的达标率应使用全面调查,此选项错误;选项B,一组数据3,6,6,7,9的数的个数是奇数,故中位数是处于中间位置的数6,此选项正确;选项C,从2000名学生中选200名学生进行抽样调查,样本容量应该是200,此选项错误;选项D,一组数据1,2,3,4,5的平均数=(1+2+3+4+5)=3,方差=[(1-3)2+(2-3)2+(3-3)2+(4-3)2+(5-3)2]=2,此选项错误.故答案选B.10、D【分析】根据中心对称图形以及轴对称图形的定义逐项判断即可.在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形;如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形.【详解】解:A.不是中心对称图形,是轴对称图形,此选项错误;B.是中心对称图形,不是轴对称图形,此选项错误;C.不是中心对称图形,是轴对称图形,此选项错误;D.既是中心对称图形,又是轴对称图形,此选项正确;故选:D.【点睛】本题考查的知识点是识别中心对称图形以及轴对称图形,掌握中心对称图形以及轴对称图形的特征是解此题的关键.二、填空题(每小题3分,共24分)11、【分析】首先得出正六边形的边长,构建直角三角形,利用直角三角形的边角关系即可求出.【详解】解:如图作正六边形外接圆,连接OA,作OM⊥AB垂足为M,得到∠AOM=30°∵圆内接正六边形ABCDEF的周长为6∴AB=1则AM=,OA=1因而OM=OA·=正六边形的边心距是【点睛】此题主要考查了正多边形和圆,正确掌握正多边形的性质是解题的关键.12、120°【解析】根据圆锥的侧面积公式S=πrl得出圆锥的母线长,再结合扇形面积公式即可求出圆心角的度数.【详解】∵侧面积为3π,∴圆锥侧面积公式为:S=πrl=π×1×l=3π,解得:l=3,∴扇形面积为3π=,解得:n=120,∴侧面展开图的圆心角是120度.故答案为:120°.【点睛】此题主要考查了圆锥的侧面积公式应用以及与展开图扇形面积关系,求出圆锥的母线长是解决问题的关键.13、1【分析】作所对的圆周角∠ADB,如图,根据圆周角定理得到∠ADB=∠AOB=55°,然后利用圆内接四边形的性质计算∠C的度数.【详解】解:作所对的圆周角∠ADB,如图,∴∠ADB=∠AOB=×110°=55°,∵∠ADB+∠C=180°,∴∠C=180°﹣55°=1°.故答案为1.【点睛】本题考查了圆的综合问题,掌握圆周角定理、圆内接四边形的性质是解题的关键.14、x﹣2y=1.【分析】根据从布袋里摸出白球的概率为,列出=,整理即可得.【详解】根据题意得=,整理,得:x﹣2y=1,故答案为:x﹣2y=1.【点睛】本题考查概率公式的应用,熟练掌握概率公式建立方程是解题的关键.15、9【分析】根据一元二次方程根的定义得,整体代入计算即可.【详解】∵是关于的方程的一个根,∴,即,∴故答案为:.【点睛】考查了一元二次方程的解的定义以及整体思想的运用.16、【分析】原式把变形为,然后逆运用积的乘方进行运算即可得到答案.【详解】解:=====.故答案为:.【点睛】此题主要考查了幂的运算,熟练掌握积的乘方运算法则是解答此题的关键.17、﹣4【分析】根据根与系数的关系:即可求出答案.【详解】设另外一根为x,由根与系数的关系可知:﹣x=4,∴x=﹣4,故答案为:﹣4【点睛】本题考查根与系数,解题的关键是熟练运用根与系数的关系,本题属于基础题型.18、1【分析】将关系式h=t2+20t+1转化为顶点式就可以直接求出结论.【详解】解:∵h=t2+20t+1=(t﹣1)2+11,∴当t=1时,h取得最大值,即礼炮从升空到引爆需要的时间为1s,故答案为:1.【点睛】本题考查了二次函数的性质顶点式的运用,解答时将一般式化为顶点式是关键.三、解答题(共66分)19、(1)证明见解析;(2)MD长为1.【分析】(1)利用矩形性质,证明BMDN是平行四边形,再结合MN⊥BD,证明BMDN是菱形.(2)利用BMDN是菱形,得BM=DM,设,则,在中使用勾股定理计算即可.【详解】(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∠A=90°,∴∠MDO=∠NBO,∠DMO=∠BNO,∵BD的垂直平分线MN∴BO=DO,∵在△DMO和△BNO中∠MDO=∠NBO,BO=DO,∠MOD=∠NOB∴△DMO≌△BNO(AAS),∴OM=ON,∵OB=OD,∴四边形BMDN是平行四边形,∵MN⊥BD∴BMDN是菱形(2)∵四边形BMDN是菱形,∴MB=MD,设MD=x,则MB=DM=x,AM=(8-x)在Rt△AMB中,BM2=AM2+AB2即x2=(8-x)2+42,解得:x=1答:MD长为1.【点睛】本题考查了矩形的性质,菱形的性质,及勾股定理,熟练使用以上知识是解题的关键.20、(1)-4;(2)【分析】(1)根据题意利用判别式的意义进行分析,然后解不等式得到m的范围,再在此范围内找出最小整数值即可;(2)由题意利用根与系数的关系得到,,进而再利用,接着解关于m的方程确定m的值.【详解】解:(1)方程有两个实数根,即的最小整数值为.(2)由根与系数的关系得:,由得:,.【点睛】本题考查根与系数的关系以及根的判别式,注意掌握若,是一元二次方程的两根时,则有.21、【分析】根据平行证出△CDK∽△DAH,利用相似比即可得出答案.【详解】解:DH=100,DK=100,AH=15,∵AH∥DK,∴∠CDK=∠A,而∠CKD=∠AHD,∴△CDK∽△DAH,∴,即,∴CK=答:KC的长为步.【点睛】本题主要考查的是相似三角形的应用,难度适中,解题关键是找出相似三角形.22、(1);(2)【分析】(1)先分别计算二次根式和三角函数值,以及零次幂,再进行计算即可;(2)先根据一元二次方程进行因式分解,即可求解.【详解】解(1)原式===(2)∴∴【点睛】本题考查了实数的运算,一元二次方程的解法,掌握二次根式和三角函数值,以及零次幂、因式分解法一元二次方程是解题的关键.23、70海里.【分析】过作于点,分别利用三角函数解和,即可进行求解.【详解】过作于点,根据题意得:(海里),在中,(海里),在中,(海里),答:可疑船只航行的距离为70海里.【点睛】本题考查了解直角三角形的应用,用到的知识点是方向角含义、三角函数的定义,关键是根据题意画出图形,构造直角三角形.24、(问题呈现)相等的弧所对的弦相等;同弧所对的圆周角相等;有两组边及其夹角分别对应相等的两个三角形全等;(理解运用)1;(变式探究)DB=CD+BA;证明见解析;(实践应用)1或.【分析】(问题呈现)根据圆的性质即可求解;(理解运用)CD=DB+BA,即CD=6﹣CD+AB,即CD=6﹣CD+4,解得:CD=5,即可求解;(变式探究)证明△MAB≌△MGB(SAS),则MA=MG,MC=MG,又DM⊥BC,则DC=DG,即可求解;(实践应用)已知∠D1AC=45°,过点D1作D1G1⊥AC于点G1,则CG1′+AB=AG1,所以AG1=(6+2)=1.如图∠D2AC=45°,同理易得AD2=.【详解】(问题呈现)①相等的弧所对的弦相等②同弧所对的圆周角相等③有两组边及其夹角分别对应相等的两个三角形全等故答案为:相等的弧所对的弦相等;同弧所定义的圆周角相等;有两组边及其夹角分别对应相等的两个三角形全等;(理解运用)CD=DB+BA,即CD=6﹣CD+AB,即CD=6﹣CD+4,解得:CD=5,BD=BC﹣CD=6﹣5=1,故答案为:1;(变式探究)DB=CD+BA.证明:在DB上截去BG=BA,连接MA、MB、MC、MG,∵M是弧AC的中点,∴AM=MC,∠MBA=∠MBG.又MB=MB∴△MAB≌△MGB(SAS)∴MA=MG∴MC=MG,又DM⊥BC,∴DC=DG,AB+DC=BG+DG,即DB=CD+BA;(实践应用)如图,BC是圆的直径,所以∠BAC=90°.因为AB=6,圆的半径为5,所以AC=2.已知∠D1AC=45°,过点D1作D1G1⊥AC于点G1,则CG1′+AB=AG1,所以AG1=(6+2)=1.所以AD1=1.如图∠D2AC=45°,同理易得AD2=.所以AD的长为1或.【点睛】本题考查全等三角形的判定(SAS)与性质、等腰三角形的性质和圆心角、弦、弧,解题的关键是掌握全等三角形的判定(SAS)与性质、等腰三角形的性质和圆心角、弦、弧.25、(1)120,18°;(2)详见解析;(3)1000【分析】(1)由优秀的人数及其所占百分比可得总人数;用360°乘以不及格人数所占比例即可得出不及格学生所占的圆心角的度数;(2)用总人数减去各等级人数之和求出良好的人数,据此可补全条形图;(3)用总人数乘以样本中“优秀”和“良好”人数和占被调查人数的比例即可得出答案.【详解】解:(1)本次抽查的人数为:24÷20%=120(人),扇形统计图中不及格学生所占的圆心角的度数为360°×=18°,故答案为:120,18°;(2)良好的人数为:120﹣(24+54+6)=36(人),补全图形如下:(3)估计该校学生知识竞赛成绩为“优秀”和“良好”两个等级共有:2000×=1000(人).【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.26、(1)点B的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度山西省高校教师资格证之高等教育法规真题练习试卷B卷附答案
- 2024年大、中容量数字程控交换机项目资金需求报告代可行性研究报告
- 2024年机械治疗及病房护理设备项目资金申请报告代可行性研究报告
- 幼儿园校舍安全排查自查报告范文
- 2024年产品保修服务协议文本
- 2024年专用液化气运输服务协议范本
- 2024年建筑效果设计方案协议模板
- 2024年二手车销售协议:全面细化
- 仓库租赁与承包协议范本2024年适用
- 出口业务协议样式2024年专业
- 教科版科学二年级上册全册教案(完整版)
- 院长行政查房科主任汇报
- 人教鄂教版小学科学六年级下册全册分层练习
- 情感纠纷案件调解协议书
- 孔明灯的知识与制作课件
- 安徽省江南十校2023-2024学年高一上学期12月分科模拟联考数学试题(解析版)
- 建筑工地施工组织与管理课件
- 风电场项目施工进度计划及保证措施
- 《心理调适方法》课件
- 2024-2023-2024年中考语文三年真题分类汇编(全国版)21记叙文 试卷(含答案解析)
- 材料科学与自然辩证法
评论
0/150
提交评论