新教材高中数学三角函数章末复习教学案新人教A版必修第一册_第1页
新教材高中数学三角函数章末复习教学案新人教A版必修第一册_第2页
新教材高中数学三角函数章末复习教学案新人教A版必修第一册_第3页
新教材高中数学三角函数章末复习教学案新人教A版必修第一册_第4页
新教材高中数学三角函数章末复习教学案新人教A版必修第一册_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第5章三角函数

知识系统整合

规律方法收藏

1.在任意角和弧度制的学习中,要区分开角的各种定义,如:锐角一定是第一象限角,

而第一象限角不全是锐角,概念要搞清;角度制和弧度制表示角不能混用,如:a=2kn+

30°,kGZ,这种表示法不正确.

2.任意角的三角函数,首先要考虑定义域,其次要深刻认识三角函数符号的含义,sin。

=:WsinX。;诱导公式的记忆要结合三角函数的定义去记忆.

3.同角三角函数的基本关系式

sin2+cos2a=1及"3=tana,必须牢记这两个基本关系式,并能应用它们进行三

cosa

角函数的求值、化简、证明,在应用中,注意掌握解题的技巧,能灵活运用公式.在应用平

方关系求某个角的另一个三角函数值时,要注意根式前面的符号的确定.

4.三角函数的诱导公式

诱导公式一至六不仅要正确、熟练地掌握其记忆的诀窍,更要能灵活地运用.

(1)一。角的三角函数是把负角转化为正角;

(2)2An+a(4CZ)角的三角函数是化任意角为[0,2")内的角;

(3)y±a,n±a,*±a,2n-cz角的三角函数是化非锐角为锐角;

(4)化负为正一化大为小~化为锐角;

(5)记忆规律:奇变偶同,象限定号.

5.正弦函数、余弦函数的图象与性质

(1)五点法作图是画三角函数图象的基本方法,要切实掌握,作图时自变量要用弧度制,

作出的图象要正规.

(2)奇偶性、单调性、最值、周期是三角函数的重要性质,/•(x+7)=f(x)应强调的是自

变量x本身加常数才是周期,如A2A-+7)=f(2x),T不是f(2x)的周期.

解答三角函数的单调性的题目一定要注意复合函数单调性法则,更要注意定义域.

6.使用本章公式时,应注意公式的正用、逆用以及变形应用.如两角和与差的正切公式

tan(a+=737―一产,其变形公式:tana±tan8=tan(a±£)(1干tanatan£)应

1+tanatanP

用广泛;公式cos2a=cos2a—sir?a=2cos2。-1=1—2sir?a的变形公式:l+cos2a=

2„,,l+cos2a21-cos2ad一

2cos'a,1—cos2。=2sifT。,cos*a----------,sin-a----------常用来升累或降暴.

7.函数y=/Jsin(ox+。)

主要掌握由函数了=$门十的图象到函数尸/sin(ox+0)的图象的平移、伸缩等变换.

注意各种变换对图象的影响,注意各物理量的意义,A,。,0与各种变换的关系.

8.三角函数的应用

(1)根据图象建立解析式;

(2)根据解析式作出图象;

(3)将实际问题抽象为与三角函数有关的函数模型;

(4)利用收集到的数据作出散点图,并根据散点图进行函数模拟.

在建立三角函数模型的时候,要注意从数据的周而复始的特点以及数据变化趋势两个方

面来考虑.

学科思想培优

一、三角函数变形的常见方法

在进行三角函数式的化简或求值时,细心观察题目的特征,灵活、恰当地选用公式,统

一角、统一函数、降低次数是三角函数关系式变形的出发点.

在本章所涉及的变形中,常用的变形方法有切化弦、弦化切和“1”的代换.

1.切化弦

当三角函数式中三角函数名称较多时,往往把三角函数化为弦,再化简变形.

求证:sin"(l+tan")+cos"(l++)=++段.

[典例1]

证明_左.边,,=sin”(1+.羡sin苗吟+cos"(1+.市cos万8

sii?ecos'e

=sin8卜cosJ"+

cos夕sin0

(八.cos28sin0

=(sin"十^V....-+cos8

+COS8

sin"°+cos*Q(sii?°+cos”「

sin8cos0

sinf+cos右边•

cosatana

[典例2]求证:E7

1+cosa

sma

..coso•-----

、…]sinacosatanasinacosa

ip-iijj--------------•-------------------=--------------•----------------------

1—cosa1+cosa1—coso1+cosa

sinosinasin,asin2a〔

1—cosQ1+cosa1—cos2asin2a'

2.弦化切

已知tan。的值,求关于sin。,cos。的齐次分式(sin。,cos的次数相同)的值,可

将求值式变为关于tan〃的代数式,此方法亦称为“弦化切”.

4

[典例3]已知tan求下列各式的值:

2cosQ+3sinQ

⑴3cosa+sina

(2)2sin2ci+sinacosa—3cos2a,

.,4

解(1)Vtana=­

o

.2cos。+3sina_2+3tan。_2+3X(3)g

3cosci+sina3+tana(4、5,

3+-o

(2)2sin2a+sin4cosa-3cosJa

2sin,。+sinQcosa—3cos2a2tan'Q+tano—3

[典例4]已知2cos2Q+3cosasin〃-3sin%=l,,一兀.求:

(1)tana;

2sina—3cos〃

⑵4sina—9cosa

解(l)2cos2a+3cosasina—3sin2a

2cos'a+3cos〈sina—3sir?a2+3tan。-3tan'a

sin2a+cos2a1+tan2a

_,2+3tana—3tan2a

则------+-----=1,

1+tana

2

即4tanG—3tana—1=0.

国军得tana=­7或tan〃=1.

:〃£(一号,一"),・•・“为第二象限角,

tana<0,;・tana=--

4

2sino3cosa1

-2X4-3

cosacosa2tana—37

(2)原式=

4sino9cost4tano—9120

-4X--9

cosacosa4

3.“1”的代换

在三角函数中,有时会含有常数1,常数1虽然非常简单,但有些三角函数式的化简却需

要利用三角函数公式将1代换为三角函数式,常见的代换方法:I=sin2q+cos2。等.

l+2sinacosa1+tana

[典例5]求证:

cos2a—sin'a1—tana'

sin2a+cos2a+2sin。cosa

证明左边=2'~2

cosa—smo

______(sina+cosa)’______

(cosa+sina)(cosQ-sina)

sina+cosatan+1.

--------:一=-;—;----=右边

cosa—sma1—tana

,等式成立.

[典例6]已知tan2a=2tar?£+l,求证:sin"£=2sin%—1.

证明’.•tar?〃=2tan2£+1,

/.tan2a+1=2(tan2£+1).

sin2o+cosJasir?£+cos」£

-=2

cosacos28

1_2

•'cos'。cos”£,

Acos2£=2cos'a.

;・1—sin,£=2(1—sir?。).

.•・sin"£=2sin'a-L

二、求三角函数值域与最值的常见类型

求三角函数的值域或最值主要依据是利用三角函数的图象或三角函数的有界性,这就要

求我们必须掌握好三角函数的图象和性质.

1.形如y=asinx+b(d¥O)型的函数

求解形如/=非储>+。(或旷=比05X+。)的函数的最值或值域问题时,利用正、余弦函数

的有界性(一lWsinx,cosxWl)求解,注意对a正、负的讨论.

[典例7]若y=asinx+b的最大值为3,最小值为1,求助的值.

a+力=3,a=l,

解当当0时,解得

—a+6=l,b=2.

仿+z?=l,f^=-1,

当水0时,一°解得,c

[―a+b=3,[b=2.

/.ab=2或ab=-2.

(JiA「JIJI]

[典例8]求函数y=3—4cos2x+p,/的最大、最小值及相应的x值.

\oJo0

-九冗]五「冗2冗

解V^e——,—,:.2x+—^——.二

o0ooo

从而一5WCOS(2/+RWL

工当cos(2x+;)=lJT

即2%+—=0,

n

即x=一­号时,%「=3-4=­L

o

2Ji

当cos2x+2x4-T

即入=看时,Jinax=3—4X(—=5.

2.形如y=asin'x+bsinx+c(dWO)型的函数

求解形如y=〃sin'x+8sinx+c(或y=acos2x+bcosx+c),〃的函数的值域或最值时,

通过换元,令t=sinx(或cosx),将原函数转化为关于1的二次函数,利用配方法求值域或

最值即可.求解过程中要注意1=sinx(或cosx)的有界性.

01「兀5n-I

[典例9]求函数F(x)=2sinX+2sinx—Q,7-的值域.

解令Z=sinx,y=f{x),

n5n即拉0.

v%e甲T・,・1WsinxWl,

.,.y=2/+2L;=2(1,

・・・1W忌,

r7'

・・・函数Ax)的值域为1,2

[典例10]已知求函数尸一sin'+sinx+l的最小值.

解令力=sinx,因为|x|W了,

所以一乎WsinxW乎,即仁—乎,阴,

则尸-d+t+l=-℃)+*re-乎,平].

根据二次函数的性质可得当――芈,即户一方时,y有最小值,为一(一半一口+)=

]一/

三、三角函数的化简

在具体实施过程中,应着重抓住“角”的统一.通过观察角、函数名、项的次数等,找

到突破口,利用切化弦、升幕、降幕、逆用公式等手段将其化简.最后结果应为:(1)能求值

尽量求值;(2)三角函数名称尽量少;(3)项数尽量少;(4)次数尽量低;(5)分母、根号下尽

量不含三角函数.

2sinl30°+sinlOO°(l+V3tan370°)

[典例11]化简:

yj1+coslO°

2sin500+sin80°(l+V3tanlO°)

解原式=

■\j1+coslO0

八人。,八。coslO+msinlO

2sin50+coslOX-------------------

coslO

42cos,5°

2sin50°+2^cosl00+-~sinlO°)

•^2|cos5°I

2sin50°+2sin(30°+10。)

*cos5°

2[sin(45°+5°)+sin(45°—5°)]

"^2cos5°

2(sin45°cos5°+cos45°sin5°+sin45°cos5°—cos45°sin5°)

■\/2cos5o

_4sin45°cos5°

A/2COS50

四、三角函数求值

三角函数求值主要有三种类型,即:

(D“给角求值”,一般给出的角都是非特殊角,从表面看较难,但仔细观察就会发现这

类问题中的角与特殊角都有一定的关系,如和或差为特殊角,当然还有可能需要运用诱导公

式.

(2)“给值求值”,即给出某些角的三角函数式的值,求另外一些三角函数的值,这类求

值问题关键在于结合条件和结论中的角,合理拆、配角.当然在这个过程中要注意角的范围.

(3)“给值求角”,本质上还是“给值求值”,只不过往往求出的是特殊角的值,在求出

角之前还需结合函数的单调性确定角,必要时还要讨论角的范围.

2小a1

[典例12]已知sinH-万J=5,且aG管,

72

求:

⑴cos中

⑵tan(。+£).

HJI

解(1):5<。<贝,

naJI

2币小,的1匹

7X2+7X2=-14-

。+尸3n

⑵咛・2

a+F5巾

・・S1IT1—cos

2214,

,a+j3

.,+£s】n^^5」

・"an2—a+J3~~3'

C0S-2-

a+J3

2tan二一6

tan(°+⑶=-TT7=n-

1—tan—~—

[典例13]已知tana="/5,cos(。+£)=—*,a,£均为锐角,求cos£的值.

解因为。,£均为锐角,所以0<。+£〈兀,

,11~n

又cos(。+£)=一«,所以万+

_5小

且sin(。+£)

—14,

因为tano=4(,所以sin4=^^,cosa=y.

所以cos£=cos[(a+£)—a]

=cos(a+£)cosa+sin(a+£)sina

五、三角恒等证明

三角恒等式的证明,就是应用三角公式,通过适当的恒等变换,消除三角恒等式两端结

构上的差异,这些差异有以下几方面:①角的差异;②三角函数名称的差异;③三角函数式

结构形式上的差异.针对上面的差异,选择合适的方法进行等价转化.

„,,4十,12(3+cos4%)

[r典例14]求证:tan2x+磊石=i.二益4户

,,sin12xcos2xsin'^+cos'x

证明证法一:左边=I~~22

cosxsinxsinxcosx

12

1-'sirTZx

(si/x+cosR-2sirfxcos',

Tsin22^Tsin22^

44

15sin2*8-4sir?2x4+4cos22x

11—cos4x1—cos4x

~(1-COS4A)

4+2(1+cos4x)2(3+co:4x)=右边.

1—cos4x1—cos4x

原式得证.

2(2+l+cos怵2(2+2cos22x)

证法二:右边=

2sin22%2sir?2x

2(1+COS22A)

4sin2^cos2x

(sir?x+cos2A)2+(cos、-si4A)”

2sin2xcos2%

2(sin'x+cos'x),2]

—tanx-=左边.

2sin2^cos2^tan2%

原式得证.

六、三角函数的图象

三角函数的图象是研究三角函数性质的基础,又是三角函数性质的具体体现.在平时的

考查中,主要体现在三角函数图象的变换和解析式的确定,以及通过对图象的描绘、观察来

讨论函数的有关性质.

[典例15]如图,是函数y=4sin(ox+。)+4(4>0,。>0)的一段图象.

(1)求此函数的解析式;

(2)分析一下该函数的图象是如何通过y=sin*的图象变换得来的?

解(1)由图象知

(吟

7=2X(丁2n一句=",

2n

3=~=2.

Ay:=^sin(2x+6)—1.

ITJlJT

当时,2X—+^=—

662f

Jl

:.0=6

・,・所求函数的解析式为y=pin^2x+—1.

JI(JIA

(2)把夕=55入的图象向左平移石■个单位长度,得到y=sin(x+句的图象,然后纵坐标

保持不变、横坐标缩短为原来的*得到尸sin(2x+-)的图象,再横坐标保持不变,纵坐标

变为原来的看得到尸聂值+看)的图象,最后把函数Tsin(2x+g)的图象向下平移1

个单位长度,得到尸&in(2x+"|-l的图象.

七、三角函数的性质

1.三角函数的性质,重点应掌握函数y=sinx,y=cosx,y=tanx的定义域、值域、单

调性、奇偶性、周期性,在此基础上

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论