版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Page272025届高三年级其次次模拟考试·数学试卷一、选择题:本题共8小题,每小题5分,共40分.1.已知集合,,则A B. C. D.2.已知a∈R,复数为纯虚数,则a=()A.3 B.﹣3 C.2 D.﹣23.已知函数,则“”是“”的().A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件4.已知函数是定义在R上的偶函数,且当时,,若对于随意实数,都有恒成立,其中,则实数a的取值范围是()A. B. C. D.5.已知函数(且)是偶函数,则关于x的不等式的解集是()A. B.C D.以上答案都不对6.函数与的图象上存在关于直线对称的点,则的取值范围是()A. B. C. D.7.在中,,,,若为的外心(即三角形外接圆的圆心),且,则()A. B. C. D.8.已知不等式对随意正数恒成立,则实数的最大值是()A. B. C. D.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.设为虚数单位,下列关于复数的命题正确的有()A. B.若互为共轭复数,则C.若,则 D.若复数为纯虚数,则10.某单位为了激励员工努力工作,确定提高员工待遇,给员工分两次涨工资,现拟定了三种涨工资方案,甲:第一次涨幅,其次次涨幅;乙:第一次涨幅,其次次涨幅;丙:第一次涨幅,其次次涨幅.其中,小明帮员工李华比较上述三种方案得到如下结论,其中正确的有()A.方案甲和方案乙工资涨得一样多 B.接受方案乙工资涨得比方案丙多C.接受方案乙工资涨得比方案甲多 D.接受方案丙工资涨得比方案甲多11.已知函数的定义域为,为的导函数,且,,若为偶函数,则下列确定成立的有()A. B.C. D.12.已知函数,下列说法正确的是()A.定义域为 B.C.是偶函数 D.在区间上有唯一极大值点三、填空题:本题共4小题,每小题5分,共20分.13.设,是的两根,则的值为__________.14.在中,角A,B,C所对的边分别为a,b,c,点O为外接圆的圆心,若,且,,则的最大值为______.15.设函数在区间内有零点,无极值点,则的取值范围是_______.16.在中,记角A,B,C所对的边分别是a,b,c,面积为S,则的最大值为______四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.设内角A,B,C的对边分别为a,b,c,已知,且.(1)求角C大小;(2)若向量与共线,求的周长.18.已知是等比数列,是等差数列,且,,,.(1)求数列和的通项公式;(2)设,,求数列的前n项和.19.已知将函数图像向左平移个单位长度后得到函数的图像关于原点中心对称.(1)求函数的解析式;(2)若三角形满意是边上的两点,且,求三角形面积的取值范围.20.已知椭圆,离心率为,直线恒过的一个焦点.(1)求的标准方程;(2)设为坐标原点,四边形的顶点均在上,交于,且,若直线的倾斜角的余弦值为,求直线与轴交点的坐标.21.已知在点处的切线方程为.(1)求实数a,b的值;(2)当时,证明:.22.已知函数,(,是自然对数的底数).(1)探讨的单调性;(2)当时,,求的取值范围.
2025届高三年级其次次模拟考试·数学试卷一、选择题:本题共8小题,每小题5分,共40分.1.已知集合,,则A. B. C. D.【答案】C【解析】【分析】利用函数的值域求法求出集合、,再利用集合的交运算即可求解.【详解】由,所以,由,所以.故选:C【点睛】本题考查了集合的交运算、函数的值域,属于基础题.2.已知a∈R,复数为纯虚数,则a=()A.3 B.﹣3 C.2 D.﹣2【答案】A【解析】【分析】利用复数代数形式的乘除运算化简,再由实部为0且虚部不为0列式求解.【详解】∵为纯虚数,∴,解得a=3故选:A.【点睛】本题考查了复数代数形式的乘除运算,考查了复数的基本概念,属于基础题.3.已知函数,则“”是“”的().A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件【答案】B【解析】【分析】分别解对应的不等式,再依据充分条件与必要条件的概念,即可得出结果.【详解】因为函数,所以由得;由得,所以,所以.因为,所以“”是“”的必要不充分条件.故选:B.【点睛】本题主要考查推断命题的必要不充分条件,涉及对数不等式的解法,属于基础题型.4.已知函数是定义在R上的偶函数,且当时,,若对于随意实数,都有恒成立,其中,则实数a的取值范围是()A. B. C. D.【答案】A【解析】【分析】利用分别常数化简解析式,结合函数解析式可推断函数在上是增函数;结合偶函数性质将不等式化为简,再利用单调性可得,,再由的范围,求得的最大值,即可得的范围.【详解】当时,,所以在上为单调递增函数,而,又是定义在R上的偶函数,所以由偶函数性质可得,则,,因为对随意实数,所以,所以的最大值为,既有,解得,即a的取值范围为,故选:A.【点睛】本题考查了函数奇偶性与单调性的综合运用,由函数单调性解不等式,确定值函数的最值求法,属于中档题.5.已知函数(且)是偶函数,则关于x的不等式的解集是()A. B.C. D.以上答案都不对【答案】B【解析】【分析】依据是偶函数求得,利用函数的单调性和奇偶性不等式等价于,解不等式即可.【详解】∵是偶函数∴,即化简得∴,(,),时都能得到,所以在上是增函数∴(,)为偶函数且在上是增函数,∴,,即,即或解得或.即.故选:B.【点睛】本题主要考查函数的单调性和奇偶性的应用,属于中档题.6.函数与的图象上存在关于直线对称的点,则的取值范围是()A. B. C. D.【答案】C【解析】【分析】由题可知,曲线与有公共点,即方程有解,可得有解,令,则,对分类探讨,得出时,取得极大值,也即为最大值,进而得出结论.【详解】解:由题可知,曲线与有公共点,即方程有解,即有解,令,则,则当时,;当时,,故时,取得极大值,也即为最大值,当趋近于时,趋近于,所以满意条件.故选:C.【点睛】本题主要考查利用导数探讨函数性质的基本方法,考查化归与转化等数学思想,考查抽象概括、运算求解等数学实力,属于难题.7.在中,,,,若为的外心(即三角形外接圆的圆心),且,则()A. B. C. D.【答案】D【解析】【分析】先设,分别为,的中点,连接,,依据向量数量积运算以及题意,得到,,求解,即可得出结果.【详解】设,分别为,的中点,连接,,则,,因为,,所以,同理可得:;因为,所以①;因为,所以②;联立①②,解得:,因此.故选:D.【点睛】本题主要考查平面对量的数量积,以及平面对量基本定理的应用,属于常考题型.8.已知不等式对随意正数恒成立,则实数的最大值是()A. B. C. D.【答案】B【解析】【分析】把不等式化为,设,求得的导数,设,利用导数求得函数的单调性和最小值,即可求解.【详解】不等式可化为,因为,所以,设,则,设,其中,则恒成立,则在上单调递增,由,令,得,所以在单调递减,单调递增,所以,对随意正数恒成立,即.故选:B【点睛】本题主要考查导数在函数中的综合应用,以及恒成立问题的求解,着重考查了转化与化归思想、逻辑推理实力与计算实力,对于恒成立问题,通常要构造新函数,利用导数探讨函数的单调性,求出最值,从而求出参数的取值范围;也可分别变量,构造新函数,干脆把问题转化为函数的最值问题.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.设为虚数单位,下列关于复数的命题正确的有()A. B.若互为共轭复数,则C.若,则 D.若复数为纯虚数,则【答案】ABD【解析】【分析】依据复数的乘法运算,复数的模值运算,纯虚数的定义即可推断.【详解】解:由题意得:对于选项A:令则所以,故A正确;对于选项B:令,,所以,故B正确;对于选项C:令,,依据复数的乘法运算可知:,,,所以C错误;对于选项D:若复数为纯虚数,则,即,故D正确.故选:ABD10.某单位为了激励员工努力工作,确定提高员工待遇,给员工分两次涨工资,现拟定了三种涨工资方案,甲:第一次涨幅,其次次涨幅;乙:第一次涨幅,其次次涨幅;丙:第一次涨幅,其次次涨幅.其中,小明帮员工李华比较上述三种方案得到如下结论,其中正确的有()A.方案甲和方案乙工资涨得一样多 B.接受方案乙工资涨得比方案丙多C.接受方案乙工资涨得比方案甲多 D.接受方案丙工资涨得比方案甲多【答案】BC【解析】【分析】不防设原工资为1,分别计算三种方案两次涨幅后的价格,利用均值不等式比较即可求解.【详解】方案甲:两次涨幅后的价格为:;方案乙:两次涨幅后的价格为:;方案丙:两次涨幅后的价格为:;因为,由均值不等式,当且仅当时等号成立,故,因为,所以,,所以方案接受方案乙工资涨得比方案甲多,接受方案甲工资涨得比方案丙多,故选:.11.已知函数的定义域为,为的导函数,且,,若为偶函数,则下列确定成立的有()A. B.C. D.【答案】ABC【解析】【分析】由是偶函数得出是奇函数,由已知两条件推出是以4为周期的函数,进而可得为周期为4的偶函数,然后赋值法逐项分析即得.【详解】因为是偶函数,则,两边求导得,所以是奇函数,故,由,,得,即,所以是周期函数,且周期为4,,,所以,对选项A:由,令得,,所以,故A正确;对选项B:由,令得,,故,所以B正确;对选项C:由,可得,又,所以,又是奇函数,,所以,又,所以,即,所以,,,所以函数为周期为4的偶函数,所以,故C正确;对选项D:,由题得不出,所以不愿定成立,故D错误.故选:ABC.【点睛】关键点点睛:本题的关键是利用条件得出函数的奇偶性及周期性,进而得到函数的性质,然后利用赋值法求解.12.已知函数,下列说法正确的是()A.定义域为 B.C.是偶函数 D.在区间上有唯一极大值点【答案】ACD【解析】【分析】依据函数解析式结合三角函数性质求得定义域,推断A;由于函数的定义域不关于原点对称,故可推断B;依据函数奇偶性的定义可推断C;求出函数的导数,依据其结构特点,构造函数,再次求导,推断导数正负,进而推断函数单调性,进而推断极大值点,即可推断D.【详解】A.的定义域为,解得的定义域为正确B.由于的定义域不关于原点对称,故函数不行能是偶函数,B错误;C.设,则定义域,,即是偶函数,正确D.,令,令,由,当时,,即当时,单调递增,当时,在单调递减,且,,,结合时,;时,,故存在使得,即有在单调递减,在单调递增,在单调递减,留意到,且时,时,,从而对于,当时,在区间单调递减,当时,,在区间单调递增,为在区间上的唯一极大值点,故D正确,故选:【点睛】难点点睛:利用导数解决在区间上有唯一极大值点的问题时,求出函数的导数,由于导数形式比较困难,故而难点就在于要依据导数的结构形式构造函数,进而再次求导结合零点存在定理推断导数正负,从而推断函数的单调性,解决极大值点问题.三、填空题:本题共4小题,每小题5分,共20分.13.设,是的两根,则的值为__________.【答案】【解析】【分析】依据判别式和韦达定理列式,利用同角公式可求出结果.【详解】依题意可得,由得或;由和得,即,解得或,因为,所以应舍去,所以.故答案为:14.在中,角A,B,C所对的边分别为a,b,c,点O为外接圆的圆心,若,且,,则的最大值为______.【答案】【解析】【分析】通过,可求得,进一步通过正弦定理和余弦定理求得半径和的大小;通过将向量和进行拆解,将与联系起来,通过平方运算,得到关于的等量关系,最终利用基本不等式得到的最大值.【详解】由可得:即由正弦定理可得圆半径为:,即依据余弦定理可知:又整理可得:又得:解得:或当时,点在外部,且,所以四点共圆,不满意题意,舍去(当且仅当时取等号)本题正确结果:【点睛】本题将解三角形、平面对量、基本不等式等几个部分相结合,对学生各部分学问的综合运用实力要求较高.难点在于将中的和通过向量的线性运算,表示为夹角和模长全都已知的向量和的关系,这也是解决平面对量线性关系中常用的处理问题的方法:将未知向量向已知向量进行转化.15.设函数在区间内有零点,无极值点,则的取值范围是_______.【答案】【解析】【分析】依题意首先求出的大致范围,再依据在区间内有零点,无极值点,得到不等式组,,即可求出的取值范围.【详解】解:依题意得,因为函数在区间内有零点,无极值点,,,解得,,当时,满意条件,当时,满意条件,当时,明显不满意条件,综上可得故答案为:【点睛】本题考查三角函数的性质,综合性强,难度比较大,属于难题.16.在中,记角A,B,C所对的边分别是a,b,c,面积为S,则的最大值为______【答案】【解析】【分析】利用面积公式和余弦定理,结合均值不等式以及线性规划即可求得最大值.【详解】(当且仅当时取等号).令,故,因为,且,故可得点表示的平面区域是半圆弧上的点,如下图所示:目标函数上,表示圆弧上一点到点点的斜率,由数形结合可知,当且仅当目标函数过点,即时,取得最小值,故可得,又,故可得,当且仅当,即三角形等边三角形时,取得最大值.故答案为:.【点睛】本题主要考查利用正余弦定理求范围问题,涉及线性规划以及均值不等式,属综合困难题.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.设的内角A,B,C的对边分别为a,b,c,已知,且.(1)求角C的大小;(2)若向量与共线,求的周长.【答案】(1),(2).【解析】【分析】(1)将变形到,即可求出角C;(2)由向量与共线可得,然后结合余弦定理解出、即可.【详解】(1)因为,所以所以,所以所以,所以因为是的内角,所以(2)因为向量与共线所以,即由余弦定理可得,即解得所以的周长为【点睛】本题考查的是三角恒等变换和正余弦定理的应用,考查了学生的计算实力,属于基础题.18.已知是等比数列,是等差数列,且,,,.(1)求数列和的通项公式;(2)设,,求数列的前n项和.【答案】(1),(2)【解析】【分析】(1)依据等差数列与等比数列的通项公式,代入即可求得等差数列的公差和等比数列的公比,进而求得数列和的通项公式;(2)代入数列和的通项公式可得的通项公式.依据错位相减法及分组求和法,即可求得数列的前n项和.【详解】(1)设等比数列的公比为,等差数列的公差为.,,,.由等差数列与等比数列通项公式可得解得或(舍)所以,(2),代入,可得则两式相减可得即所以【点睛】本题考查了等差数列与等比数列通项公式的应用,等比数列求和公式的应用,错位相减法求数列的前n项和,分组求和法求数列的和,属于中档题.19.已知将函数的图像向左平移个单位长度后得到函数的图像关于原点中心对称.(1)求函数的解析式;(2)若三角形满意是边上的两点,且,求三角形面积的取值范围.【答案】(1)(2)【解析】【分析】(1)依据题意将函数化简,利用正弦函数的平移变更得到,结合图象关于原点中心对称即可求出函数解析式;(2)结合(1)可得,结合题意,建立平面直角坐标系得到点的轨迹方程为,再依据几何关系即可求解.【小问1详解】(1)由已知化简得,,由得,又,【小问2详解】易得,由①②又将①②式并结合可得:以所在直线为轴,以中垂线为轴建立直角坐标系,则,设,则由可得:点的轨迹方程为,即,当时,取到最大值,依据几何关系易知三角形面积的取值范围为,20.已知椭圆,离心率为,直线恒过的一个焦点.(1)求的标准方程;(2)设为坐标原点,四边形的顶点均在上,交于,且,若直线的倾斜角的余弦值为,求直线与轴交点的坐标.【答案】(1)(2)【解析】【分析】(1)将转化成直线点斜式方程形式,求出所过的恒点,进而知道椭圆的焦点,再依据椭圆的离心率公式进行求解即可.(2)依据向量等式,可以确定分别是的中点.设,求出直线的方程,与椭圆方程联立,消元,利用一元二次方程根与系数关系,求出的坐标,同理求出点坐标,求出直线的方程,最终求出直线与轴交点的坐标.【详解】(1)设椭圆的半焦距为,可化为,所以直线恒过点,所以点,可得.因为离心率为,所以,解得,由得,所以的标准方程为.(2)因为,所以.由得分别是的中点.设.由直线的倾斜角的余弦值为,得直线的斜率为2,所以,联立消去,得.明显,,且,,所以,可得,同理可得,所以,所以.令,得,所以直线与轴交点的坐
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 关于导购员工作的岗位职责(3篇)
- 小学生宿舍管理制度模版(2篇)
- 安全教育培训制度模版(2篇)
- 备品配件管理制度(2篇)
- 2024年控制院内感染管理工作制度范文(2篇)
- 焦化厂生产安全事故管理制度范文(2篇)
- 机房防火安全管理制度(2篇)
- 幼儿园幼儿接送制度模版(二篇)
- 配奶间医院感染管理及消毒隔离制度范文(2篇)
- 保洁部管理制度范例(2篇)
- 2025年重庆货运从业资格证考试题及答案详解
- 生命不是游戏拒绝死亡挑战主题班会
- 本地化部署合同
- 2024年云南省中考历史试卷
- 新教科版小学1-6年级科学需做实验目录
- 拒绝躺平 停止摆烂-学生心理健康主题班会(课件)
- 现代教育技术智慧树知到期末考试答案章节答案2024年济宁学院
- 输电线路铁塔基础施工质量控制
- (完整版)服装生产工艺流程图汇总,推荐文档
- 2022年工商管理本科形成性考核册答案(附题目)
- 钢筋混凝土整体现浇双向板楼盖结构设计
评论
0/150
提交评论