版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.在下列各式中,运算结果正确的是()A.x2+x2=x4 B.x﹣2x=﹣xC.x2•x3=x6 D.(x﹣1)2=x2﹣12.如图,点A、B、C均在⊙O上,若∠AOC=80°,则∠ABC的大小是()A.30° B.35° C.40° D.50°3.反比例函数,下列说法不正确的是()A.图象经过点(1,-3) B.图象位于第二、四象限C.图象关于直线y=x对称 D.y随x的增大而增大4.若整数使关于的不等式组至少有4个整数解,且使关于的分式方程有整数解,那么所有满足条件的的和是()A. B. C. D.5.已知一个圆锥的母线长为30cm,侧面积为300πcm,则这个圆锥的底面半径为()A.5cm B.10cm C.15cm D.20cm6.如图,AC,BE是⊙O的直径,弦AD与BE交于点F,下列三角形中,外心不是点O的是()A.△ABE B.△ACF C.△ABD D.△ADE7.在Rt△ABC中,∠C=90°,若斜边AB是直角边BC的3倍,则tanB的值是()A. B.3 C. D.28.下列图案中,是中心对称图形的是()A. B. C. D.9.图中的两个三角形是位似图形,它们的位似中心是()A.点P B.点DC.点M D.点N10.先将抛物线关于轴作轴对称变换,所得的新抛物线的解析式为()A. B. C. D.11.如图,AB是⊙O直径,若∠AOC=100°,则∠D的度数是()A.50° B.40° C.30° D.45°12.在平面直角坐标系中,将点A(−1,2)向右平移3个单位长度得到点B,则点B关于x轴的对称点C的坐标是()A.(−4,−2) B.(2,2) C.(−2,2) D.(2,−2)二、填空题(每题4分,共24分)13.若抛物线的开口向上,则的取值范围是________.14.在平面直角坐标系中,点(﹣3,2)关于原点对称的点的坐标是_____.15.在平面直角坐标系中,二次函数与反比例函数的图象如图所示,若两个函数图象上有三个不同的点,,,其中为常数,令,则的值为_________.(用含的代数式表示)16.等边三角形中,,将绕的中点逆时针旋转,得到,其中点的运动路径为,则图中阴影部分的面积为__________.17.为了提高学校的就餐效率,巫溪中学实践小组对食堂就餐情况进行调研后发现:在单位时间内,每个窗口买走午餐的人数和因不愿长久等待而到小卖部的人数各是一个固定值,并且发现若开一个窗口,45分钟可使等待的人都能买到午餐,若同时开2个窗口,则需30分钟.还发现,若能在15分钟内买到午餐,那么在单位时间内,去小卖部就餐的人就会减少80%.在学校总人数一定且人人都要就餐的情况下,为方便学生就餐,总务处要求食堂在10分钟内卖完午餐,至少要同时开多少______个窗口.18.在Rt△ABC中,∠C=90°,若sinA=,则cosB=_____.三、解答题(共78分)19.(8分)已知在中,,,,为边上的一点.过点作射线,分别交边、于点、.(1)当为的中点,且、时,如图1,_______:(2)若为的中点,将绕点旋转到图2位置时,_______;(3)若改变点到图3的位置,且时,求的值.20.(8分)己知:如图,抛物线与坐标轴分别交于点,点是线段上方抛物线上的一个动点,(1)求抛物线解析式:(2)当点运动到什么位置时,的面积最大?21.(8分)已知:如图,菱形中,点,分别在,边上,,连接,.求证:.22.(10分)如图,方格纸中的每个小方格都是边长为1个单位的正方形,建立平面直角坐标系后,的顶点均在格点上,点的坐标为.(1)画出关于轴对称的;写出顶点的坐标(,),(,).(2)画出将绕原点按顺时针旋转所得的;写出顶点的坐标(,),(,),(,).(3)与成中心对称图形吗?若成中心对称图形,写出对称中心的坐标.23.(10分)如图1,我们已经学过:点C将线段AB分成两部分,如果,那么称点C为线段AB的黄金分割点.某校的数学拓展性课程班,在进行知识拓展时,张老师由黄金分割点拓展到“黄金分割线”,类似地给出“黄金分割线”的定义:直线l将一个面积为S的图形分成两部分,这两部分的面积分别为S1,S2,如果,那么称直线l为该图形的黄金分割线.如图2,在△ABC中,∠A=36°,AB=AC,∠C的平分线交AB于点D.(1)证明点D是AB边上的黄金分割点;(2)证明直线CD是△ABC的黄金分割线.24.(10分)如图,在中,,点为边的中点,请按下列要求作图,并解决问题:(1)作点关于的对称点;(2)在(1)的条件下,将绕点顺时针旋转,①面出旋转后的(其中、、三点旋转后的对应点分别是点、、);②若,则________.(用含的式子表示)25.(12分)如图:在Rt△ABC中,∠C=90°,∠ABC=30°。延长CB至D,使DB=AB。连接AD.(1)求∠ADB的度数.(2)根据图形,不使用计算器和数学用表,请你求出tan75°的值.26.计算:2cos30°-tan45°-.
参考答案一、选择题(每题4分,共48分)1、B【分析】根据合并同类项、完全平方公式及同底数幂的乘法法则进行各选项的判断即可.【详解】解:A、x2+x2=2x2,故本选项错误;B、x﹣2x=﹣x,故本选项正确;C、x2•x3=x5,故本选项错误;D、(x﹣1)2=x2﹣2x+1,故本选项错误.故选B.【点睛】本题主要考查了合并同类项、完全平方公式及同底数幂的乘法运算等,掌握运算法则是解题的关键.2、C【分析】根据圆周角与圆心角的关键即可解答.【详解】∵∠AOC=80°,∴.故选:C.【点睛】此题考查圆周角定理:同弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.3、D【解析】通过反比例图象上的点的坐标特征,可对A选项做出判断;通过反比例函数图象和性质、增减性、对称性可对其它选项做出判断,得出答案.【详解】解:由点的坐标满足反比例函数,故A是正确的;由,双曲线位于二、四象限,故B也是正确的;由反比例函数的对称性,可知反比例函数关于对称是正确的,故C也是正确的,由反比例函数的性质,,在每个象限内,随的增大而增大,不在同一象限,不具有此性质,故D是不正确的,故选:D.【点睛】考查反比例函数的性质,当时,在每个象限内随的增大而增大的性质、反比例函数的图象是轴对称图象,和是它的对称轴,同时也是中心对称图形;熟练掌握反比例函数图象上点的坐标特征和反比例函数图象和性质是解答此题的关键.4、A【分析】根据不等式组求出a的范围,然后再根据分式方程求出a的取值范围,综合考虑确定a的值,再求和即可.【详解】解不等式组得:∵至少有4个整数解∴,解得分式方程去分母得解得:∵分式方程有整数解,a为整数∴、、、∴、、、、、、、∵,∴又∵∴或满足条件的的和是-13,故选A.【点睛】本题考查了不等式组与分式方程,解题的关键是解分式方程时需要舍去增根的情况.5、B【解析】设这个圆锥的底面半径为r,根据圆锥的侧面积公式可得π×r×30=300π,解得r=10cm,故选B.6、B【解析】试题分析:A.OA=OB=OE,所以点O为△ABE的外接圆圆心;B.OA=OC≠OF,所以点不是△ACF的外接圆圆心;C.OA=OB=OD,所以点O为△ABD的外接圆圆心;D.OA=OD=OE,所以点O为△ADE的外接圆圆心;故选B考点:三角形外心7、D【分析】先求出AC,再根据正切的定义求解即可.【详解】设BC=x,则AB=3x,由勾股定理得,AC=,tanB===,故选D.考点:1.锐角三角函数的定义;2.勾股定理.8、C【解析】根据中心对称图形的概念即可得出答案.【详解】A选项中,不是中心对称图形,故该选项错误;B选项中,是轴对称图形,不是中心对称图形,故该选项错误;C选项中,是中心对称图形,故该选项正确;D选项中,不是中心对称图形,故该选项错误.故选C【点睛】本题主要考查中心对称图形,掌握中心对称图形的概念是解题的关键.9、A【解析】试题分析:根据位似变换的定义:对应点的连线交于一点,交点就是位似中心.即位似中心一定在对应点的连线上.解:∵位似图形的位似中心位于对应点连线所在的直线上,点M、N为对应点,所以位似中心在M、N所在的直线上,因为点P在直线MN上,所以点P为位似中心.故选A.考点:位似变换.10、C【分析】根据平面直角坐标系中,二次函数关于轴对称的特点得出答案.【详解】根据二次函数关于轴对称的特点:两抛物线关于轴对称,二次项系数,一次项系数,常数项均互为相反数,可得:抛物线关于轴对称的新抛物线的解析式为故选:C.【点睛】本题主要考查二次函数关于轴对称的特点,熟知两抛物线关于轴对称,二次项系数,一次项系数,常数项均互为相反数,对称轴不变是关键.11、B【分析】根据∠AOB=180°,∠AOC=100°,可得出∠BOC的度数,最后根据圆周角∠BDC与圆心角∠BOC所对的弧都是弧BC,即可求出∠BDC的度数.【详解】解:∵AB是⊙O直径,∴∠AOB=180°,∵∠AOC=100°,∴∠BOC=∠AOB-∠AOC=80°;∵所对的圆周角是∠BDC,圆心角是∠BOC,∴;故答案选B.【点睛】本题考查同圆或等圆中,同弧或等弧所对的圆周角是圆心角的一半,在做题时遇到已知圆心角,求圆周角的度数,可以通过计算,得出相应的圆心角的度数,即可得出圆周角的度数.12、D【分析】首先根据横坐标右移加,左移减可得B点坐标,然后再关于x轴对称点的坐标特点:横坐标不变,纵坐标符号改变可得答案.【详解】解:点A(-1,2)向右平移3个单位长度得到的B的坐标为(-1+3,2),即(2,2),
则点B关于x轴的对称点C的坐标是(2,-2),故答案为D二、填空题(每题4分,共24分)13、a>2【分析】利用二次函数图像的性质直接求解.【详解】解:∵抛物线的开口向上,∴a-2>0,∴a>2,故答案为a>2.【点睛】本题考查二次函数图像的性质,掌握二次项系数决定开口方向是本题的解题关键.14、(3,﹣2)【解析】根据平面直角坐标系内两点关于原点对称横纵坐标互为相反数,即可得出答案.【详解】解:平面直角坐标系内两点关于原点对称横纵坐标互为相反数,∴点(﹣3,2)关于原点对称的点的坐标是(3,﹣2),故答案为(3,﹣2).【点睛】本题主要考查了平面直角坐标系内点的坐标位置关系,难度较小.15、【分析】根据题意由二次函数的性质、反比例函数的性质可以用含m的代数式表示出W的值,本题得以解决.【详解】解:∵两个函数图象上有三个不同的点A(x1,m),B(x2,m),C(x3,m),其中m为常数,
∴其中有两个点一定在二次函数图象上,且这两个点的横坐标互为相反数,第三个点一定在反比例函数图象上,
假设点A和点B在二次函数图象上,则点C一定在反比例函数图象上,
∴m=,得x3=,
∴=x1+x2+x3=0+x3=;故答案为:.【点睛】本题考查反比例函数的图象和图象上点的坐标特征、二次函数的图象和图象上点的坐标特征,解答本题的关键是明确题意,利用反比例函数和二次函数的性质解答.16、【分析】先利用勾股定理求出OB,再根据,计算即可.【详解】解:在等边三角形中,O为的中点,∴OB⊥OC,,∴∠BOC=90°∴∵将绕的中点逆时针旋转,得到∴∴三点共线∴故答案为:【点睛】本题考查旋转变换、扇形面积公式,三角形的面积公式,以及勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.17、9【分析】设每个窗口每分钟能卖人的午餐,每分钟外出就餐有人,学生总数为人,并设要同时开个窗口,根据并且发现若开1个窗口,45分钟可使等待人都能买到午餐;若同时开2个窗口,则需30分钟.还发现,若在15分钟内等待的学生都能买到午餐,在单位时间内,外出就餐的人数可减少80%.在学校学生总人数不变且人人都要就餐的情况下,为了方便学生就餐,调查小组建议学校食堂10分钟内卖完午餐,可列出不等式求解.【详解】解:设每个窗口每分钟能卖人的午餐,每分钟外出就餐有人,学生总数为人,并设要同时开个窗口,依题意有,由①、②得,,代入③得,所以.因此,至少要同时开9个窗口.故答案为:9【点睛】考查一元一次不等式组的应用;一些必须的量没有时,应设其为未知数;当题中有多个未知数时,应利用相应的方程用其中一个未知数表示出其余未知数;得到20分钟个窗口卖出午餐数的关系式是解决本题的关键.18、.【解析】根据一个角的余弦等于它余角的正弦,可得答案.【详解】解:由∠C=90°,若sinA=,得cosB=sinA=,故答案为.【点睛】本题考查了互余两角的三角函数,利用一个角的余弦等于它余角的正弦是解题关键.三、解答题(共78分)19、(1)2;(2)2;(3)【分析】(1)由为的中点,结合三角形的中位线的性质得到从而可得答案;(2)如图,过作于过作于结合(1)求解再证明利用相似三角形的性质可得答案;(3)过点分别作于点,于点,证明,可得再证明,利用相似三角形的性质求解同法求解从而可得答案.【详解】解:(1)为的中点,故答案为:(2)如图,过作于过作于由(1)同理可得:故答案为:(3)过点分别作于点,于点,∵,∴.∵,∴.∴.∴.∴.∵,,∴.∴∴.∵,∴.∵,∴.∴.同理可得:.∴.【点睛】本题考查的是矩形的性质,三角形中位线的判定与性质,相似三角形的判定与性质,掌握以上知识是解题的关键.20、(1);(2)点运动到坐标为,面积最大.【分析】(1)用待定系数法即可求抛物线解析式.
(2)设点P横坐标为t,过点P作PF∥y轴交AB于点F,求直线AB解析式,即能用t表示点F坐标,进而表示PF的长.把△PAB分成△PAF与△PBF求面积和,即得到△PAB面积与t的函数关系,配方即得到t为何值时,△PAB面积最大,进而求得此时点P坐标.【详解】解:(1)抛物线过点,,解这个方程组,得,抛物线解析式为.(2)如图1,过点作轴于点,交于点.时,,.直线解析式为.点在线段上方抛物线上,设...=点运动到坐标为,面积最大.【点睛】本题考查了二次函数的图象与性质,利用二次函数求三角形面积的最大值,关键在于把原三角形分割成有一边平行于y轴的两个三角形面积之和.21、见解析【分析】根据菱形的性质和全等三角形的判定和性质解答即可.【详解】证明:连接,如图,四边形是菱形,,在和中,,(SAS),.【点睛】本题考查菱形的性质,关键是根据菱形的性质和全等三角形的判定和性质解答.22、(1)作图见解析,;(2)作图见解析,;(3)成中心对称,对称中心坐标是【分析】(1)根据关于轴对称的点的特征找到A,C的对应点,然后顺次连接即可,再根据关于轴对称的点横坐标互为相反数,纵坐标相同即可写出的坐标;(2)将绕原点O顺时针旋转90°得到三点的对应点,然后顺次连接即可,再根据直角坐标系即可得到的坐标;(3)利用成中心对称的概念:如果一个图形绕某一点旋转180°后与另一个图形重合,我们就把这两个图形叫做成中心对称判断即可,然后根据一组对应点相连,其中点就是对称中心即可得出答案.【详解】解:(1)如图,根据关于y轴对称的点的特点可知:;(2)如图,由图可知,;(3)根据中心对称图形的定义可知与成中心对称,对称中心为线段的中点,坐标是.【点睛】本题主要考查作轴对称图形、中心对称和作旋转图形,掌握关于y轴对称的点的特点和对称中心的求法是解题的关键.23、(1)详见解析;(2)详见解析.【分析】(1)证明AD=CD=BC,证明△BCD∽△BCA,得到.则有,所以点D是AB边上的黄金分割点;(2)证明,直线CD是△ABC的黄金分割线;【详解】解:(1)点D是AB边上的黄金分割点.理由如下:AB=AC,∠A=,∠B=∠ACB=.CD是角平分线,∠ACD=∠BCD=,∠A=∠ACD,AD=CD.∠CDB=180-∠B-∠BCD=,∠CDB=∠B,BC=CD.BC=AD.在△BCD与△BCA中,∠B=∠B,∠BCD=∠A=,△BCD∽△BCA,点D是AB边上的黄金分割点.(2)直线CD是△ABC的黄金分割线.理由如下:设ABC中,AB边上的高为h,则,,,由(1)得点D是AB边上的黄金分割点,,直线CD是△ABC的黄金分割线【点睛】本题主要考查三角想相似及相似的性质,注意与题中黄金分割线定义相结合解题.24、(1)见解析;(2)①见解析,②90°−α【分析】(1)利用网格
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度毛石石材工程设计合同2篇
- 二零二五年度家庭和睦保障-夫妻暂时分居协议3篇
- 安全生产事故隐患排查监管责任制度模版(2篇)
- 安全监督副站长岗位职责模版(2篇)
- 2025年运动会开幕式致辞稿(2篇)
- 二零二五年度水利工程车辆土石方运输与进度款支付合同3篇
- 二零二五年度文化企业股东权益保护与公司运营协议书3篇
- 2025年外研衔接版第二册地理下册阶段测试试卷
- 2024年绿色养生酒订购协议书版B版
- 二零二五年度商场停车场智能化管理系统合同2篇
- 2024年公共卫生基本知识考试题库(附含答案)
- 2024新沪教版英语初一上单词表(英译汉)
- NB/T 11446-2023煤矿连采连充技术要求
- 人教版八年级上册生物期末必刷15道识图题
- 任务13-1 火腿肠的加工
- SY-T 6966-2023 输油气管道工程安全仪表系统设计规范
- 学生公寓管理员培训
- 固体废弃物循环利用项目风险管理方案
- 2024年中国电建集团新能源开发有限责任公司招聘笔试参考题库含答案解析
- 《中小学消防安全教育:森林防火》课件模板
- 会计师事务所审计专项方案
评论
0/150
提交评论