汽车转向器毕业设计_第1页
汽车转向器毕业设计_第2页
汽车转向器毕业设计_第3页
汽车转向器毕业设计_第4页
汽车转向器毕业设计_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

目录插图清单………………………….3表格清单……………………...…..3摘要4Abstract5第一章绪论61.1汽车转向器的功能及重要性61.2汽车转向器的主要性能参数6转向器的效率6传动比的变化特性7转向盘自由行程91.4汽车转向器的工作原理101.4.1动力转向系统的工作原理101.4.2转阀式液压助力转向器工作原理11第二章总体方案设计122.1转向器设计的分类12齿轮齿条式转向器122.1.2蜗杆曲柄销式转向器122.1.3循环球式转向器122.2转向器方案分析132.3防伤平安机构方案分析15第三章循环球式转向器的设计与计算173.1螺杆、钢球和螺母传动副183.1.1钢球中心距D、螺杆外径D1和螺母内径D2193.1.2钢球直径d及数量n193.1.3滚道截面203.1.4接触角203.1.5螺距P和螺旋线导程角213.1.6工作钢球圈数W213.1.7导管内径d1213.2齿条、齿扇传动副的设计213.3循环球式转向器零件强度计算23钢球与滚道之间的接触应力σ233.3.2齿的弯曲应力243.3.3转向摇臂轴直径确实定24第四章动力转向机构的设计254.1对动力转向机构的要求254.2液压式动力转向机构布置方案分析254.2.1动力转向机构布置方案分析254.3液压式动力转向机构的计算274.3.1动力缸尺寸的计算27.2分配滑阀参数的选择274.3.3分配阀的回位弹簧274.3.4动力转向器的评价指标29第五章转向梯形315.1转向梯形结构方案分析315.1.1整体式转向梯形315.1.2断开式转向梯形32整体式转向梯形机构优化设计33致谢37参考文献38插图清单TOC\h\z\t"插图清单"\c图1-1转向器角传动比变化特性曲线9图1-2液压动力转向系统示意图11图2-1循环球式齿条-齿扇转向器13图2-2防伤转向传动轴简图15图2-3防伤转向轴简图15图3-1螺杆钢球螺母传动副19图3-2四段圆弧滚道截面20图3-3为获得变化的齿侧间隙齿扇的加工原理和计算简图22图3-4用于选择偏心n的线图22图3-5螺杆受力简图24图4-1动力转向机构布置方案图26图4-2动力缸的布置27图4-3确定动力缸长度尺寸简图28图4-4预开隙28图4-5静特性曲线分段图30图5-1整体式转向梯形31图5-2断开式转向梯形32图5-3断开点确实定33图5-4理想的内、外车轮转角关系简图34图5-5转向梯形机构优化设计的可行域36表格清单表3-1

循环球转向器的主要参数………….17表3-2循环球式转向器的局部参数………..18表3-3系数k与A/B的关系………………...23摘要汽车转向器是汽车的重要组成局部,也是决定汽车主动平安性的关键总成,它的质量严重影响汽车的操纵稳定性。随着汽车工业的开展,汽车转向器也在不断的得到改良,虽然电子转向器已开始应用,但机械式转向器仍然广泛地被世界各国汽车及汽车零部件生产厂商所采用。而在机械式转向器中,循环球齿条-齿扇式转向器由于其自身的特点被广泛应用于各级各类汽车上。本文选择GX1608A型循环球齿条-齿扇式转向器作为研究课题,其主要内容有:汽车转向器的组成分类;转向器总成方案分析及其数据确定和转向器的设计过程。这种转向器的优点是,操纵轻便,磨损小,寿命长。缺点是结构复杂,本钱高,转向灵敏度不如齿轮齿条式。因此逐渐被齿轮齿条式取代。但随着动力转向的应用,循环球式转向器近年来又得到广泛使用。关键词;转向器操纵稳定性循环球齿条-齿扇式转向器AbstractGearcarsanimportantcomponentoftheinitiativeisdecidedautomobilesafetyofthekeyassembly,Itseriouslyaffectedthequalityofthevehiclehandlingandstability.Alongwiththedevelopmentoftheautoindustry,automobilesteeringgeariscontinuouslyimproved,althoughtheelectronicsteeringgearhasbeguntouseButmechanicalsteeringgearisstillwidelybeenworldmotorvehiclesandpartsmanufacturersadopted.Andthemechanicalsteeringgear,Rackcycleball-typesteeringgeartoothfansasitsowncharacteristicshasbeenwidelyusedinvarioustypesvehicles.ThegraduationdesignoptionsGX1608Acyclegearball-typesteeringgearrackasaresearchtopic,Itsmaincontentsare:automotivesteeringgearcomponentsclassification;assemblywastoprogramanalysisanddatatoidentifyandsteeringgeardesignprocess.Theadvantageofsuchsteeringgear,andmanipulatinglight,wearandtear,longlife.Thedisadvantageisthatthestructureiscomplicatedandcostly,thansteeringrackandpinionsensitivity.Thereforegraduallybeingreplacedbyrackandpinion.However,withthepowersteeringapplications,theball-typesteeringgearcycleandarewidelyusedinrecentyears.Keywords;DiverterBallhandlingandstabilityCyclerack-typesteeringgeardivert第一章绪论汽车转向器的功能及重要性汽车在行驶过程中需要改变行驶方向时,驾驶员通过汽车转向系使汽车转向桥〔一般是前桥〕上的车轮相对于汽车纵轴线偏转一定的角度,使汽车到达转向目的。另外,当汽车在直线行驶时,转向轮往往会受到路面侧向干扰力的作用而自动偏转的,从而改变了原来行驶方向,此时,驾驶员也可以通过汽车转向系使转向轮向相反的方向偏转,恢复了汽车原来的行驶方向。汽车转向系的功用是改变和保持汽车的行驶方向,而作为转向系重要执行机构的转向器的作用是:将转向盘的转动变为齿条轴的直线运动或转向摇臂的摆动,降低传动速度,增大转向力矩并改变转向力矩的传动方向。汽车转向器的主要性能参数转向器的效率转向器的输出功率与输入功率之比,称为转向器的传动效率。功率P1从转向轴输入,经转向摇臂轴输出所求得的效率称为正效率,用符号η+表示,η+=(P1—P2)/P1;反之称为逆效率,用符号η-表示,η-=(P3—P2)/P3。式中,P2为转向器中的摩擦功率;P3为作用在转向摇臂轴上的功率。为了保证转向时驾驶员转动转向盘轻便,要求正效率高。为了保证汽车转向后转向轮和转向盘能自动返回到直线行驶位置,又需要有一定的逆效率。为了减轻在不平路面上行驶时驾驶员的疲劳,车轮与路面之间的作用力传至转向盘上要尽可能小,防止打手又要求此逆效率尽可能低。转向器的正效率η+影响转向器正效率的因素有:转向器的类型、结构特点、结构参数和制造质量等。〔1〕转向器类型、结构特点与正效率在前述四种转向器中,齿轮齿条式、循环球式转向器的正效率比拟高,而蜗杆指销式特别是蜗杆滚轮式转向器的正效率要明显的低些。同一类型转向器,因结构不同其正效率也不一样。另外两种结构的转向器正效率,根据试验结果分别为70%和75%。转向摇臂轴轴承的形式对效率也有影响,用滚针轴承比用滑动轴承可使正逆效率提高约10%。(2)转向器的结构参数与正效率如果忽略轴承和其它地方的摩擦损失,只考虑啮合副的摩擦损失,对于蜗杆和螺杆类转向器,其正效率可用下式计算η+=tanα/tan(α+ρ)…………………〔1-1〕式中,α为蜗杆(或螺杆)的螺线导程角;ρ为摩擦角,ρ=arctanf(f为摩擦因数)。〔2〕转向器逆效率η-根据逆效率大小不同,转向器又有可逆式、极限可逆式和不可逆式之分。路面作用在车轮上的力,经过转向系可大局部传递到转向盘,这种逆效率较高的转向器属于可逆式。它能保证转向后,转向轮和转向盘自动回正。这既减轻了驾驶员的疲劳,又提高了行驶平安性。但是,在不平路面上行驶时,车轮受到的冲击力,能大局部传至转向盘,造成驾驶员“打手”,使之精神状态紧张。如果长时间在不平路面上行驶,易使驾驶员疲劳,影响平安驾驶。属于可逆式的转向器有齿轮齿条式和循环球式转向器。不可逆式转向器,是指车轮受到的冲击力不能传到转向盘的转向器。该冲击力由转向传动机构的零件承受,因而这些零件容易损坏。同时,它既不能保证车轮自动回正,驾驶员又缺乏路面感觉,因此,现代汽车不采用这种转向器。极限可逆式转向器介于上述两者之间。在车轮受到冲击力作用时,此力只有较小一局部传至转向盘。它的逆效率较低,在不平路面上行驶时,驾驶员并不十分紧张,同时转向传动机构的零件所承受的冲击力也比不可逆式转向器要小。如果忽略轴承和其它地方的摩擦损失,只考虑啮合副的摩擦损失,那么逆效率可用下式计算H-=tan(α-ρ)tanα………………(1-2)式(2—1)和式(2—2)说明:增加导程角α,正、逆效率均增大。受η-增大的影响,α不宜取得过大。当导程角小于或等于摩擦角时,逆效率为负值或者为零,此时说明该转向器是不可逆式转向器。为此,导程角必须大于摩擦角。通常螺线导程角选在8°~10°之间。1传动比的变化特性1〕转向系传动比转向系的传动比包括转向系的角传动比和转向系的力传动比从轮胎接地面中心作用在两个转向轮上的合力2Fw与作用在转向盘上的手力之比,称为力传动比,即ip=2Fw/Fh转向盘转动角速度ωw与同侧转向节偏转角速度ωk之比,称为转向系角传动比,即iwo=ωw/ωk=(dφ/dt)/(dβkdt),式中,dφ为转向盘转角增量;dβk为转向节转角增量;dt为时间增量。它又由转向器角传动比iw和转向传动机构角传动比iw′所组成,即iwo=iwiw′。转向盘角速度ωw与摇臂轴转动角速度ωp之比,称为转向器角传动比iw,即iw=ωw/ωp=(dφ/dt)/(dβp/dt),式中,dβp为摇臂轴转角增量。此定义适用于除齿轮齿条式之外的转向器。摇臂轴转动角速度ωp与同侧转向节偏转角速度ωk之比,称为转向传动机构的角传动比iw′,即iw=ωp/ωk=(dβp/dt)/(dβk/dt)。2〕力传动比与转向系角传动比的关系轮胎与地面之间的转向阻力Fw和作用在转向节上的转向阻力矩Mr之间有如下关系Fw=Mr/α……〔1-3〕式中,α为主销偏移距,指从转向节主销轴线的延长线与支承平面的交点至车轮中心平面与支承平面交线间的距离。作用在转向盘上的手力Fh可用下式表示Fh=2Mh/Dsw……(1-4〕式中,Mh为作用在转向盘上的力矩;Dsw为转向盘直径。将式(2—3)、式(2—4)代入ip=2Fw/Fh后得到ip=MrDsw/Mhα………………〔1-5〕分析式(2—5)可知,当主销偏移距为a时,力传动比ip应取大些才能保证转向轻便。通常轿车的a值在0.4~0.6倍轮胎的胎面宽度尺寸范围内选取,而货车的d值在40~60mm范围内选取。转向盘直径Dsw根据车型不同在JB4505—86转向盘尺寸标准中规定的系列内选取。如果忽略摩擦损失,根据能量守恒原理,2Mr/Mh可用下式表示2Mr/Mh=dφ/dβk……………〔1-6〕将式(2—6)代人式(2—5)后得到ip=iwoDsw/2α…………………〔1-7〕当α和Dsw不变时,力传动比ip越大,虽然转向越轻,但iwo也越大,说明转向不灵敏。3〕转向系的角传动比iwo转向传动机构角传动比,除用iw′=dβp/dβk表示以外,还可以近似地用转向节臂臂长L2与摇臂臂长Ll之比来表示,即iw′=dβp/dβk≈L2/Ll。现代汽车结构中,L2与Ll的比值大约在0.85~1.1之间,可近似认为其比值为iwo≈iw=dφ/dβ。由此可见,研究转向系的传动比特性,只需研究转向器的角传动比iw及其变化规律即可。4〕转向器角传动比及其变化规律式(2—7)说明:增大角传动比可以增加力传动比。从ip=2Fw/Fh式可知,当Fw一定时,增大ip能减小作用在转向盘上的手力Fh,使操纵轻便。考虑到iwo≈iw,由iwo的定义可知:对于一定的转向盘角速度,转向轮偏转角速度与转向器角传动比成反比。角传动比增加后,转向轮偏转角速度对转向盘角速度的响应变得迟钝,使转向操纵时间增长,汽车转向灵敏性降低,所以“轻”和“灵”构成一对矛盾。为解决这对矛盾,可采用变速比转向器。齿轮齿条式、循环球式、蜗杆指销式转向器都可以制成变速比转向器。循环球齿条齿扇式转向器的角传动比iw=2πr/P。因结构原因,螺距P不能变化,但可以用改变齿扇啮合半径r的方法,到达使循环球齿条齿扇式转向器实现变速比的目的。随转向盘转角变化,转向器角传动比可以设计成减小、增大或保持不变的。影响选取角传动比变化规律的因素,主要是转向轴负荷大小和对汽车机动能力的要求。假设转向轴负荷小,在转向盘全转角范围内,驾驶员不存在转向沉重问题。装用动力转向的汽车,因转向阻力矩由动力装置克服,所以在上述两种情况下,均应取较小的转向器角传动比并能减少转向盘转动的总圈数,以提高汽车的机动能力。转向轴负荷大又没有装动力转向的汽车,因转向阻力矩大致与‘车轮偏转角度大小成正比变化,汽车低速急转弯行驶时的操纵轻便性问题突出,故应选用大些的转向器角传动比。汽车以较高车速转向行驶时,转向轮转角较小,转向阻力矩也小,此时要求转向轮反响灵敏,转向器角传动比应当小些。因此,转向器角传动比变化曲线应选用大致呈中间小两端大些的下凹形曲线,如图1-1所示:图1-1转向器角传动比变化特性曲线转向盘在中间位置的转向器角传动比不宜过小。过小那么在汽车高速直线行驶时,对转向盘转角过分敏感和使反冲效应加大,使驾驶员精确控制转向轮的运动有困难。直行位置的转向器角传动比不宜低于15~16。1转向盘自由行程对转向盘自由行程的认识转向盘在空转阶段中的角行程,称为转向盘自由行程。转向盘自由行程对于缓和路面冲击及防止使驾驶员过度紧张是有利的,但不宜过大,以免过分影响灵敏性。一般说来,转向盘从相应于汽车直线行驶的中间位置向任一方向的自由行程最好不超过10°~15°。当零件磨损严重到十转向盘自由行程超过25°~35°时,必须进行调整。2〕转向盘自由行程过大的原因造成转向盘自由行程过大的原因,主要有如下几个方面:(1)转向器蜗杆与滚轮(或齿扇、指销等)间隙过大;(2)转向传动装置松动;(3)转向传动装置的球铰链间隙过大(松动);(4)前轮轴承或转向节主销与衬套配合不紧等。1.3汽车转向器的要求汽车转弯行驶时,全部车轮应绕顺时针方向旋转,任何车轮不应有侧滑。不满足这项要求会加速轮胎磨损,并降低汽车的行驶稳定性。汽车转向行驶后,在驾驶员松开转向盘的情况下,转向轮能自动返回到直线行驶位置,并稳定行驶。汽车在任何行驶状态下,转向轮不得产生振动,转向盘没有摆动。转向传动机构和悬架导向装置共同工作时,由于运动不协调使车轮产生的摆动应最小。保证汽车有较高的机动性,具有快速和小转弯能力。操纵轻便。转向轮碰到障碍物以后,传给转向盘的反冲力要尽可能小。转向器和转向传动机构的球头处,有消除因磨损而产生间隙的调整机构。在车祸中,当转向轴和转向盘由于车架或车身的变形而后移时,转向系应有能使驾驶员免遭或减轻伤害的防伤装置。进行运动校核,保证转向盘与转向轮转动方向一致。正确设计转向梯形机构,可以使第一项得到保证。转向系中设有转向减震器时,能够防止转向轮产生振动,同时又能使传动转向盘上的反冲力明显下降。为了使汽车具有良好的机动性能,必须使转向轮有尽可能大的转角,并要到达按前外轮车轮轨迹计算,其最小转弯半径能到达汽车轴距的2-2.5倍。通常用转向时驾驶员作用在转向盘上的切向力大小和转向盘转动圈数多少两项指标来评价操纵轻便性。没有动力转向的轿车,在行驶中转向,此力应为50-100N;有动力转向时,此力在20-50N。当货车从直线行驶状态,以10Km/h的速度在柏油路或水泥的水平路段上转入沿半径12m的圆周行驶,且路面枯燥,假设转向系内没有装动力转向器,上述切向力不得超过250N;有动力转向器时,不得超过120N。轿车转向盘从中间位置转到每一端的圈数不得超过2.0圈,货车那么要求不超过3.0圈。汽车转向器的工作原理动力转向系统的工作原理动力转向系统是在机械式转向系统的根底上加一套动力辅助装置组成的。如以下图,转向油泵6安装在发动机上,由曲轴通过皮带驱动并向外输出液压油。转向油罐5有进、出油管接头,通过油管分别与转向油泵和转向控制阀2联接。转向控制阀用以改变油路。机械转向器和缸体形成左右两个工作腔,它们分别通过油道和转向控制阀联接。当汽车直线行驶时,转向控制阀2将转向油泵6泵出来的工作液与油罐相通,转向油泵处于卸荷状态,动力转向器不起助力作用。当汽车需要向右转向时,驾驶员向右转动转向盘,转向控制阀将转向油泵出来的工作液与R腔接通,将L腔与油罐接通,在油压的作用下,活塞向下移动,通过传动结构使左、右轮向右偏转,从而实现右转向。向左转向时,情况与上述相反。图1-2液压动力转向系统示意图l.转向操纵机构2.转向控制阀3.机械转向器与转向动力缸总成4.转向传动结构5.转向油罐6.转向油泵R.转向动力缸右腔L.转向动力缸左腔转阀式液压助力转向器工作原理汽车直线行驶时,阀芯与阀套的位置关系如图中所示。自泵来的液压油经阀芯与阀套间的间隙,流向动力缸两端,动力缸两端油压相等。驾驶员转动方向盘时,阀芯与阀套的相对位置发生改变,使得大局部或全部来自泵的液压油流入动力缸某一端,而另一端与回油管路接通,动力缸促进汽车左传或右转。第二章总体方案设计转向器设计的分类转向器按结构形式可分为多种类型。历史上曾出现过许多种形式的转向器,目前较常用的有齿轮齿条式、蜗杆曲柄指销式、循环球-齿条齿扇式、循环球曲柄指销式、蜗杆滚轮式等。其中第二、第四种分别是第一、第三种的变形形式,而蜗杆滚轮式那么更少见。如果按照助力形式,又可以分为机械式〔无助力〕,和动力式〔有助力〕两种,其中动力转向器又可以分为气压动力式、液压动力式、电动助力式、电液助力式等种类。齿轮齿条式转向器它是一种最常见的转向器。其根本结构是一对相互啮合的小齿轮和齿条,由与转向轴做成一体的转向齿轮和常与转向横拉杆做成一体的齿条组成。转向轴带动小齿轮旋转时,齿条便做直线运动。有时,靠齿条来直接带动横拉杆,就可使转向轮转向。所以,这是一种最简单的转向器。在汽车上得到广泛应用。与其它形式转向器比拟,齿轮齿条式转向器最主要的优点是:结构简单、紧凑;壳体采用铝合金或镁合金压铸而成,转向器的质量比拟小;传动效率高达90%;齿轮与齿条之间因磨损出现间隙后,利用装在齿条背部、靠近主动小齿轮处的压紧力可以调节的弹簧,可自动消除齿间间隙,这不仅可以提高转向系统的刚度,还可以防止工作时产生冲击和噪声;转向器占用的体积小;没有转向摇臂和直拉杆,所以转向轮转角可以增大;制造本钱低。齿轮齿条式转向器的主要缺点是:因逆效率高(60%~70%),汽车在不平路面上行驶时,发生在转向轮与路面之间的冲击力,大局部能传至转向盘,称之为反冲。反冲现象会使驾驶员精神紧张,并难以准确控制汽车行驶方向,转向盘突然转动又会造成打手,对驾驶员造成伤害。蜗杆曲柄销式转向器它是以蜗杆为主动件,曲柄销为从动件的转向器。蜗杆具有梯形螺纹,手指状的锥形指销用轴承支承在曲柄上,曲柄与转向摇臂轴制成一体。转向时,通过转向盘转动蜗杆、嵌于蜗杆螺旋槽中的锥形指销一边自转,一边绕转向摇臂轴做圆弧运动,从而带动曲柄和转向垂臂摆动,再通过转向传动机构使转向轮偏转。这种转向器通常用于转向力较大的载货汽车上。循环球式转向器循环球式:这种转向装置是由齿轮机构将来自转向盘的旋转力进行减速,使转向盘的旋转运动变为涡轮蜗杆的旋转运动,滚珠螺杆和螺母夹着钢球啮合,因而滚珠螺杆的旋转运动变为直线运动,螺母再与扇形齿轮啮合,直线运动再次变为旋转运动,使连杆臂摇动,连杆臂再使连动拉杆和横拉杆做直线运动,改变车轮的方向。这是一种古典的机构,现代轿车已大多不再使用,但又被最新方式的助力转向装置所应用。它的原理相当于利用了螺母与螺栓在旋转过程中产生的相对移动,而在螺纹与螺纹之间夹入了钢球以减小阻力,所有钢球在一个首尾相连的封闭的螺旋曲线内滚动,循环球式故而得名。循环球式转向器的优点是:在螺杆和螺母之间因为有可以循环流动的钢球,将滑动摩擦变为滚动摩擦,因而传动效率可到达75%~85%;在结构和工艺上采取措施,包括提高制造精度,改善工作外表的外表粗糙度和螺杆、螺母上的螺旋槽经淬火和磨削加工,使之有足够的硬度和耐磨损性能,可保证有足够的使用寿命;转向器的传动比可以变化;工作平稳可靠;齿条和齿扇之间的间隙调整工作容易进行;适合用来做整体式动力转向器。循环球式转向器的主要缺点是:逆效率高,结构复杂,制造困难,制造精度要求高。本次设计主要以循环球式转向器为主。2.2转向器方案分析循环球式转向器又称为综合式转向器〔因为它由两级传动副组成〕,是目前国内、外汽车上较为流行的一种结构形式。循环球式转向器中一般有两级传动副,第一级是由螺杆和螺母共同形成的螺旋槽内装有钢球构成的传动副,第二级是由螺母上齿条与摇臂轴上齿扇构成的齿条-齿扇传动副。转向时,转动转向盘,与转向轴连为一体的螺杆带动方形螺母作轴向移动〔因螺杆在轴向方向固定在转向器壳上〕,螺母的下端制成齿条,因而能带动与转向摇臂轴做成一体的齿扇的转动。图2-1所示为一循环球式齿条-齿扇转向器。转向螺杆的轴径支撑在两个角接触球轴承上,轴承紧度可用调整垫片调整。转向螺母外侧的下平面加工成齿条,与齿扇轴〔即摇臂轴〕上的齿扇啮合。可见,转向螺母即是第一级传动副的从动件,也是第二级传动副〔齿条-齿扇传动副〕的主动件〔齿条〕。通过转向盘和转向轴转动转向螺杆时,转向螺母不能转动,只能轴向移动,并驱使齿扇轴转动。图2-1循环球式齿条-齿扇转向器1转向摇臂2向心推力球轴承3螺杆副总成4壳体组件5螺栓6上盖调整垫片8上盖9柱管夹子10螺杆油封11铁丝12顶丝13柱管14转向轴组件15支承套16自攻螺钉17螺母M12X1.2518螺母MB19螺栓20垫圈21滤气螺塞为了减少转向螺杆和转向螺母之间的摩擦和磨损,二者的螺纹制成半圆形凹槽,并不直接接触,其间装有许多钢球,从而将滑动摩擦变为滚动摩擦。转向螺杆和螺母上都加工出断面轮廓为两段或三段不同心圆弧组成近似半圆的螺旋槽。两者的螺旋槽能配合形成近似圆形断面的螺旋管状通道,这样可以使转向螺母和转向螺杆轴向定位好,滚道和钢球间有间隙,可以用来贮存碎屑和润滑油,有助于减少螺母和螺杆之间的磨损。螺母侧面有两对通孔,可将钢球从此孔塞入螺旋形通道内。两根U形钢球导管的两端插入螺母侧面的两对通孔中,导管内也装满了钢球。这样两根导管和螺母内的螺旋管状通道组成两条各自独立的封闭的钢球“流道”。转向螺杆转动时,通过钢球将力传给转向螺母,螺母即沿轴向移动。同时,在螺杆与螺母两者和钢球间的摩擦力偶作用下,所有钢球便在螺旋管状通道内滚动,形成“球流”。钢球在管状通道内绕行1.5周后,流出螺母而进入导管的一端,再由导管另一端流回螺旋管状通道。因此,在转向器工作时,两列钢球只是在各自封闭的“流道”内循环,而不致脱出。与齿条相啮合的齿扇,其齿厚是在分度圆上沿齿扇轴线按线性关系变化的,故为变厚齿扇。只要使齿扇轴相对于齿条作轴向移动,即能调整两者的啮合间隙。调整螺钉装在侧盖上,并用螺母锁紧。齿扇轴内侧端部有切槽,调整螺钉的圆柱形端头即嵌入此切槽中。将调整螺钉旋入,那么啮合间隙减少;反之,那么啮合间隙增大。循环球式转向器在螺杆和螺母之间因为有可以循环流动的钢球,将滑动摩擦变为滚动摩擦,因而其正传动效率很高〔可达90%~95%〕,故操纵轻便;在结构和工艺上采取措施,可保证有足够的使用寿命;工作平稳可靠;齿条和齿扇之间的间隙调整工作容易进行。但其逆效率高,容易将路面冲击力传动转向盘。不过,对于前轴轴载质量不大而又经常在平坦路面上行使的轻中型载货汽车而言,这一缺点影响不大;而对于载重量较大的汽车,使用循环球式转向器时,除可以在转向器中增加吸振装置以减少路面冲击反力外,往往装有液力转向加力器。由于循环球式转向器在结构上便于与液力转向加力器设计为一个整体,而液力系统又正可以缓和路面的冲击,因此,循环球式转向器得到日益广泛的应用。循环球齿条-齿扇式转向器的优点:传动效率高,可达90%;在结构和工艺上采取措施,包括提高制造精度,改善工作外表的外表粗糙度和螺杆螺母上的螺旋槽经淬火和磨削加工,使之有足够的硬度和耐磨性能,可保证有足够的使用寿命;转向器的传动比可以变化;工作平稳可靠;齿条和齿扇之间的间隙调整工作容易进行;适合用来做整体式转向器。2.3防伤平安机构方案分析根据交通事故统计资料和对汽车碰撞试验结果的分析说明:汽车正面碰撞时,转向盘、转向管柱是使驾驶员受伤的主要元件。因此,要求汽车在以48km/h的速度、正面同其他物体碰撞的试验中,转向管柱和转向轴在水平方向的后移量不得大于127mm;在台架试验中,用人体模型的躯干以/s的速度碰撞转向盘时,作用在转向盘上的水平力不得超过11123N。为此,需要在转向系中设计并安装能防止或者减轻驾驶员受伤的机构。如在转向系中,使有关零件在撞击时产生塑性变形、弹性变形或是利用摩擦等来吸收冲击能量。当转向传动轴中采用万向节连接的结构时,只要布置合理,即可在汽车正面碰撞时防止转向轴等向乘客舱或驾驶室内移动,如图2-2。这种结构虽然不能吸收碰撞能量,但其结构简单,只要万向节连接的两轴之间存在夹角,正面撞车后转向传动轴和转向盘处在图中双点划线的位置,转向盘没有后移便不会危及驾驶员平安。转向轴上设置有万向节不仅能提高平安性,而且有利于使转向盘和转向器在汽车上得到合理布置,提高了操纵方便性并且拆装容易。图2-3所示为乘用车上应用的防伤平安机构,其结构最简单,制造容易。转向轴分为两段,上转向轴的下端经弯曲成形后,其轴线与主轴线之间偏移一段距离,其端面与焊有两个圆头圆柱销的紧固板焊接,两圆柱销的中心线对称于上转向轴的主轴线。下转向轴呈T字形,其上端与一个压铸件上铸有两孔,孔内压人橡胶套与塑料衬套后再与上转向轴呈倒钩状连接,构成平安转向轴。该轴在使用过程中国除传递转矩外,在受到一定数值的轴向力时,上下转向轴能自动脱开,如图2-4所示,以确保驾驶员平安。ab图2-2防伤转向传动轴简图图2-3防伤转向轴简图位于两万向节之间的转向传动轴,是由套管和轴组成。套管经过挤压处理后形成与两侧经铣削加工后所形成的轴断面形状与尺寸完全一致。装配后从两侧的孔中注入塑料,形成塑料销钉将套管与轴连接为一体。汽车与其他物体正面碰撞时,作用在套管与轴之间的轴向力使塑料销钉受到剪切作用,到达一定值以后剪断销钉,然后套管与轴相对移动,存在其间的塑料能增大摩擦阻力吸收冲击能量。此外,套管与轴相互压缩,长度缩短,可以减少转向盘向驾驶员一侧的移动量,起到保护驾驶员的作用。这种防伤机构的结构简单,制造容易,只要合理地选取铆钉数量与直径,便能保证它可靠地工作和吸收冲击能量。撞击后因套管与轴仍处于连接状态,所以汽车仍有可能转向行驶到不阻碍交通的路边。弹性联轴器式防伤机构,由上、下转向轴和有45°斜面的凸缘、弹性垫片、连接螺栓组成。汽车一旦出现严重的、破坏性碰撞事故,弹性垫片不仅有轴向变形,而且能撕裂直至断开。同时吸收了冲击能量,并允许上、下转向轴相对移动。这种防伤结构的结构简单、制造容易、本钱低。但弹性垫片的存在会降低扭转刚度,对此必须采取结构予以消除。这种结构工作的可靠性由弹性垫片的强度来决定。汽车发生碰撞事故时,凸缘斜面上产生的轴向力FZ和径向力Fj相等,其最大值由弹性垫片的强度来决定。即FZ=Fj=a0tδk1k2σ1式中,a0为实际断面宽度;t为垫片厚度;δ为垫片帘布层数;k1为考虑垫片不同时损坏的系数;k2为考虑危险断面边缘的帘线完整性被破坏的系数;σ1为拉伸应力。第三章循环球式转向器的设计与计算循环球式转向器主要尺寸参数的选择如下所述。表3-1循环球转向器的主要参数参数数值齿扇模数/mm摇臂轴直径/mm22263032323842钢球中心距/mm20232528303540螺杆外径/mm20232528293438钢球直径/mm4螺距/mm工作圈数环流行数2齿扇齿数55齿扇整圆齿数1213131415齿扇压力角22°30′27°30′切削角6°30′6°30′7°30′齿扇宽/mm2225252725283028-3234383538表3-2循环球式转向器的局部参数模数m螺杆外径螺纹升程螺母长度钢球直径齿扇压力角齿扇切削角摇臂轴外径207.938()405.556()2230′630′730′22238.731()455.556()2230′630′730′26259.525()486.350()2230′630′730′292910.319()627.144()2230′630′730′353410.319()727.144()2230′630′730′383810.319()827.144()2230′630′730′423.1螺杆、钢球和螺母传动副螺杆、钢球、螺母传动副与通常的螺杆、螺母、传动副的区别在于前者是经过滚动的钢球将力由螺杆传至螺母,变滑动摩擦为滚动摩擦。螺杆和螺母上的相互对应的螺旋槽构成钢球的螺旋滚道。转向时转向盘经转向轴转动螺杆,使钢球沿螺母上的滚道循环地滚动〔如图3-1〕。为了形成螺母上的循环轨道,在螺母上与其齿条相反的一侧外表〔通常为上外表〕需钻孔与螺母的螺旋滚道打通以形成一个环路滚道的两个导孔,并分别插入钢球导管的两端导管。钢球导管是由钢板冲压成具有半圆截面的滚道,然后对接成导管,并经氰化处理使之耐磨。插入螺母螺旋滚道两个导孔的钢球的两个导管的中心线应与螺母螺旋滚道的中心线相切。螺杆与螺母的螺旋滚道为单头〔单螺旋线〕的,且具有不变的螺距,通常螺距t约在8-13mm范围内,螺旋线导程角约为6°-11°。转向盘与转向器左置时转向螺杆为左旋,右置时为右旋。钢球直径d约为6-9mm。一般应参考同类型汽车的转向器选取钢球直径d并应使之符合国家标准。钢球直径尺寸差应不超过128×10-5d。显然,大直径的钢球其承载能力亦大,但也使转向器的尺寸增大。钢球的数量也影响承载能力,增多钢球使承载能力增大,但也使钢球的流动性变差,从而要降低传动效率。经验说明在每个环路中n以不大于60为好。图3-1螺杆钢球螺母传动副钢球中心距D、螺杆外径D1和螺母内径D2尺寸D、D1、D2如图3-1所示。钢球中心距是根本尺寸。螺母外径D1、螺母内径D2及钢球直径对确定钢球中心距D的大小有影响,而D又对转向器结构尺寸和强度有影响。在保证足够的强度条件下,尽可能将D值取小些。选取D值的规律是随扇齿模数的增大,钢球中心距D也相应增加。螺杆外径D2通常在20~38mm范围内变化。螺母内径D2应大于的的D1,一般要求D2-D1=(5%-10%)D。钢球直径d及数量n钢球直径尺寸d取得越大,能提高承载能力,同时螺杆和螺母传动机构和转向器的尺寸也随之增大。钢球直径应符合国家标准,一般常在7~9mm范围内选用。增加钢球数量n〔n不超过60〕,能提高承载能力;但使钢球流动性变坏,从而使传动效率降低。钢球数目可有下式确定:式中D-钢球中心距;W——个环路中的钢球工作圈数,为了使载荷在各钢球间分布均匀,一般W=1.5-2.5,当转向器的钢球工作圈数需大于2.5时,那么应采用两个独立的环路;d-钢球直径;——螺线导程角;3.1.3滚道截面四段圆弧滚道截面。滚道截面有四点接触式、两点接触式和椭圆滚道截面等。四点接触式滚道截面由四段圆弧组成,螺杆和螺母的滚道截面各为两段圆弧。四点接触式滚道截面可获得最小的轴向间隙,以防止轴向定位的不稳定,受载后根本上可消除轴向位移,但滚道与钢球间仍应有间隙以贮存磨屑、减小磨损。虽然其制造工艺较复杂,但仍得到广泛应用。两点接触式滚道截面由两段圆弧组成,其螺杆和螺母滚道均为单圆弧,形状简单。当螺杆受有轴向载荷时,螺杆与螺母间产生轴向相对位移使轴向定位不稳定,增加了转向盘的自由行程,这对装动力转向的转向系特别不利,因为它降低了分配阀的灵敏度,从而影响转向性能。椭圆滚道的螺杆局部为椭圆截面、螺母局部为圆弧截面。钢球以三点〔与滚道接触,被精确地定位于滚道中心,轴向定位精确,但加工较复杂。螺杆滚道应倒角以防止尖角划伤钢球。接触角接触角θ是指钢球与螺杆滚道接触点的正压力方向与螺杆滚道法面轴线间的夹角。增大θ将使径向力增大而轴向力减小;反之那么相反。通常θ多取,以使径向力与轴向力的分配均匀。图3-2四段圆弧滚道截面螺距P和螺旋线导程角转向盘转动λ角,对应螺母移动的距离s为s=λP/2π…………...〔3-2〕.式中,P为螺纹螺距。与此同时,齿扇节圆转过弧长等于s,相应摇臂轴转过βp角,其间关系为s=βpr…………...〔3-3〕式中,r为齿扇节圆半径。联合以上两式得λ=2πrβp/P,将λ对βp求导,得循环球式转向器角传动比iw为iw=2πr/P…………...(3-4)由式上式可知,螺距P影响转向器角传动比的值。在螺距不变的条件下,钢球直径d越大,图3-1中的尺寸b越小,要求b=(P-d)>。螺距 P一般在8~11mm内选取。前者影响转向器的角传动比;后者影响传动效率。选择时应满足角传动比的要求和保证有较高的正效率,而反行程时不发生自锁现象。3.1.6工作钢球圈数W两种。3.1.7导管内径d1容纳钢球而且钢球在其内部流动的导管内径d1=d+e,式中,e为钢球直径d与导管内径之间的间隙。e不易过大,否那么钢球流经导管时球心偏离导管中心线的距离增大,并使流动阻力增大。一般e=0.4~0.8mm。导管壁厚取为1mm螺杆和螺母一般采用.20CrMnTi、22CrMnMo、20CrNi3A。淬火后外表硬度为HRC58-64.〕,是通过对滚道的高精度加工,使滚道外表具有高光洁度,采用标准的高精度的钢球〔可用二、三级精度的〕,并对螺杆、钢球及螺母的尺寸进行选配来到达的。3.2齿条、齿扇传动副的设计齿扇通常有5个齿,它与摇臂轴为一体。齿扇的齿厚沿齿长方向是变化的,这样即可通过轴向移动摇臂轴来调节齿扇与齿条的啮合间隙。由于转向器经常处于中间位置工作,因此齿扇与齿条的中间齿磨损最厉害。为了消除中间齿磨损后产生的间隙而又不致在转弯时使两端齿卡住,那么应增大两端齿啮合时的齿侧间隙。这种必要的齿侧间隙的改变可通过使齿扇各齿具有不同的齿厚来到达。即齿扇由中间齿向两端齿的齿厚是逐渐减小的。为此可在齿扇的切齿过程中使毛坯绕工艺中心转动,其相对于摇臂轴的中心有距离为n的偏心。这样加工的齿扇在与齿条的啮合中由中间齿转向两端的齿时,齿侧间隙也逐渐加大,可表达为………..…(3-5)式中——径向间隙;——啮合角;——齿扇的分度圆半径;——摇臂轴的转角。图3-3为获得变化的齿侧间隙齿扇的加工原理和计算简图图3-4用于选择偏心n的线图当,确定后,根据上式可绘制图,用于选择适当的n值,以便使齿条、齿扇传动副两端齿啮合时,齿侧间隙能够适应消除中间齿最大磨损量所形成的间隙的需要。齿条、齿扇传动副各对啮合齿齿侧间隙的改变也可以用改变齿条各齿槽宽而不改变齿扇各轮齿即可。3.3循环球式转向器零件强度计算钢球与滚道之间的接触应力σ用下式计算钢球与滚道之间的接触应力σ………..…………..…………..…〔3-6〕式中,k为系数,根据A/B值从表3-3查取,,;为滚道截面半径;r为钢球半径;为螺杆外半径;E为材料弹性模量,等于;为钢球与螺杆之间的正压力,可用下式计算………..……..………….……..…〔3-7〕式中,为螺杆螺线导程角;θ为接触角;n为参与工作的钢球数;为作用在螺杆上的轴向力,见图3-5。当接触外表硬度为58~64HRC时,许用接触应力[σ]=2500。A/B1.00.90.70.40.3k0.4100.4400.4680.4900.536表3-3系数k与A/B的关系图3-5螺杆受力简图3.3.2齿的弯曲应力用下式计算齿扇齿的弯曲应力………..…………..…………..…………..…〔3-8〕式中,F为作用在齿扇上的圆周力;h为齿扇的齿高;B为齿扇的齿宽;s为基圆齿厚。许用弯曲应力为[]=540。螺杆和螺母用20CrMnTi钢制造,外表渗碳。前轴负荷不大的汽车,渗碳层深度在0.8~1.2mm;前轴负荷大的汽车,渗碳层深度在~1.45mm。外表硬度为58~63HRC。此外,应根据材料力学提供的公式,对接触应力进行验算。3.3.3转向摇臂轴直径确实定用下式计算确定摇臂轴直径d………………..….………..….…………..…〔3-9〕式中,K为平安系数,根据汽车使用条件不同可取;为转向阻力矩;为扭转强度极限。摇臂轴用20CrMnTi钢制造,外表渗碳,渗碳层深度在0.8~1.2mm。前轴负荷大的汽车,渗碳层深度为1.05~1.45mm。外表硬度为58~63HRC。第四章动力转向机构的设计4.1对动力转向机构的要求(1)运动学上应保持转向轮转角和驾驶员转动转向盘的转角之间保持一定的比例关系。(2)随着转向轮阻力的增大(或减小),作用在转向盘上的手力必须增大(或减小),称之为“路感”。(3)当作用在转向盘上的切向力Fh≥0.025~0.190kN时(因汽车形式不同而异),动力转向器就应开始工作。(4)转向后,转向盘应自动回正,并使汽车保持在稳定的直线行驶状态。(5)工作灵敏,即转向盘转动后,系统内压力能很快增长到最大值。(6)动力转向失灵时,仍能用机械系统操纵车轮转向。(7)密封性能好,内、外泄漏少。液压式动力转向机构布置方案分析液压式动力转向因为油液工作压力高,动力缸尺寸小、质量小,结构紧凑,油液具有不可压缩性,灵敏度高以及油液的阻尼作用可吸收路面冲击等优点而被广泛应用。动力转向机构布置方案分析由分配阀、转向器、动力缸、液压泵、贮油罐和油管等组成液压式动力转向机构。根据分配阀、转向器和动力缸三者相互位置的不同,它分为整体式(图4-1a)后者按分配阀所在位置不同又分为:分配阀装在动力缸上的称为联阀式,见图4-1b;分配阀装在转向器和动力缸之间的拉杆上称为连杆式,见图4-1c;分配阀装在转向器上的称为半分置式,见图4-1d在分析比拟上述几种不同动力转向机构布置方案时,常从结构上是否紧凑;转向器主要零件是否承受由动力缸建立起来的载荷;拆装转向器是否容易;管路,特别是软管的管路长短;转向轮在侧向力作用下是否容易引起转向轮摆振;能不能采用典型转向器等方面来做比拟。例如整体式动力转向器,由于分配阀、转向器、动力缸三者装在一起,因而结构紧凑,管路也短。在转向轮受到侧向力作用时或者发动机的振动不会影响分配阀的振动,因而不能引起转向轮摆振。它的缺点是转向摇臂轴、摇臂等转向器主要零件,都要承受由动力缸所建立起来的载荷,因此必须加大它们的尺寸和质量,这对布置它们带来不利的影响。同时还不能采用典型转向器,拆装转向器时要比分置式的困难。除此之外,由于对转向器的密封性能要求高,这对转向器的设计,特别是重型汽车的转向器设计带来困难。图4-1动力转向机构布置方案图1.分配阀2.转向器3.动力缸4.2.2分配阀有两种结构方案:分配阀中的阀与阀体以轴向移动方式来控制油路的称为滑阀式,以旋转运动来控制油路的称为转阀式。滑阀式分配阀结构简单,生产工艺性较好,易于布置,使用性能较好,曾得到广泛应用。转阀式与滑阀式比拟,灵敏度高,密封件少,结构较为先进。由于转阀式是利用扭杆弹簧使转阀回位,所以结构复杂。转阀式分配阀在国内、外均得到广泛应用。4.3液压式动力转向机构的计算动力缸尺寸的计算动力缸的主要尺寸有动力缸内径、活塞行程、活塞杆直径和动力缸壳体壁厚。动力缸的布置假设如图4-2所示,那么在计算前,应先行确定作用在直拉杆上的力。图4-2动力缸的布置此力应用式………………〔4-1〕计算出来的转向阻力矩换算。动力缸应产生的推力F用下式计算………………………〔4-2〕式中,为转向摇臂长度;L为转向摇臂轴到动力缸活塞之间的距离。推力F与工作油液压力p和动力缸截面面积S之间有如下关系F=pS………………………〔4-4〕所以………〔4-5〕因为动力缸活塞两侧的工作面积不同,应按较小一侧的工作面积来计算,即…………〔4-6〕式中,D为动力缸内径;为活塞杆直径,一般初选时可取=O.35D。联立式(4-5)和式(4-6)后得到…………〔4-7〕式中,压力p一般在6~10MPa,最高可取16.5~18.0MPa。活塞行程是车轮转至最大转角时,由直拉杆的移动量换算到活塞杆处的移动量得到的。图4-3确定动力缸长度尺寸简图如图4-2所示,活塞移到两端极限位置,还要留有一定间隙。活塞移到左侧极限位置时,其端面到动力缸之间,应当留有10ram间隙。活塞移到右侧极限位置时,其端面到缸盖之间应留有e=(O.5~O.6)D的间隙,以利于活塞导向作用。。动力缸的最大长度s用下式计算确定…………(4-8)式中,为活塞最大位移量。动力缸壳体壁厚t,根据计算轴向平面拉应力来确定…………………(4-9)式中,p为油液压力;D为动力缸内径;t为动力缸壳体壁厚;n为平安系数,取n=3.5~5.0;为壳体材料的屈服点。壳体材料有球墨铸铁和铸造铝合金两种。球墨铸铁采用QT500-05。,抗拉强度为500MPa,屈服点为350MPa。铸造铝合金多采用ZLl05,抗拉强度为160~240Mpa。图4-4预开隙活塞杆用40或45钢制造。为提高可靠性和寿命,要求其外表镀铬并磨光。分配滑阀参数的选择分配滑阀的主要参数有:滑阀直径d,预开隙、密封长度和滑阀总移动量e等,见图7-28。上述参数影响分配阀的泄漏量、液流速度和转向灵敏度。设计时可根据以下关系式来确定上述参数。(1)分配阀的泄漏量△Q要求△Q不大于溢流阀限制下最大排量的5%~10%。△Q按下式计算………(4-10)式中,△Q为分配阀泄漏量();△r为滑阀和阀体在半径方向的间隙(cm),一般△r在O.0005~O.00125cm,计算时取最大间隙:△p为滑阀进、出口油压差,又称局部压力降(MPa);d为滑阀外径(cm);为密封长度(cm),=e-;P为液体动力粘度(Pa·s)。(2)局部压力降△p汽车直线行驶时,液流流经分配阀后流回油箱。液流流经分配阀时,产生的局部压力降△p用下式计算…………………(4-11)式中,△p为局部压力降(MPa);秒为中立位置的液流流速(m/s),用下式计算……………(4-12)式中,倍;d为滑阀直径(cm);为预开隙(cm)。△p的允许值为MPa。分析式(4-11)、式(4-12)可知:假设滑阀直径d和预开隙取得过小,将使中立位置的液流流速增大,并导致△p超过允许值。4.分配阀的回位弹簧为了防止因外界干预破坏分配阀的正常工作和保证转向后转向盘的自动回正作用,回位弹簧的力在保证转向轻便的条件下,应尽可能取大些。为克服回位弹簧上的压力,反映在转向盘上的作用力,轿车应比货车的小些。回位弹簧预压缩力的最小值,应大于转向器逆传动时的摩擦力,否那么转向后转向轮不可能有自动回正作用。转向器的摩擦力可由试验确定.动力转向器的评价指标(1)动力转向器的作用效能用效能指标来评价动力转向器的作用效能。式中,和为没有动力转向器和有动力转向器时,转动转向轮所必须作用在转向盘上的力。现有动力转向器的效能指标s=l~15。(2)路感驾驶员转动转向盘,除要克服转向器的摩擦力和回位弹簧阻力外,还要克服反映路感的液压阻力。液压阻力等于反作用阀面积与工作液压压强的乘积。在最大工作压力时,轿车:换算到转向盘上的力增加约30~50N,货车:增加80~100N。(3)转向灵敏度转向灵敏度可以用转向盘行程与滑阀行程的比值i来评价………………(4-13)式中,为转向盘直径;为转向盘转角;δ为滑阀行程。由式(4-13)可见,当和δ的数值不变时,转向盘转角仅仅取决于比值i,所以这完全可以表达转向灵敏度。比值主越小,那么动力转向作用的灵敏度越高。转向灵敏度也可以用接通动力转向时,作用到转向盘的手力和转角来评价,要求此力在20~50N,转角在10º~15º范围。(4)动力转向器的静特性动力转向器的静特性是指输入转矩与输出转矩之间的变化关系曲线,是用来评价动力转向器的主要特性指标。因输出转矩等于油压压力乘以动力缸工作面积和作用力臂,对于已确定的结构,后两项是常量,所以可以用输入转矩与输出油压p之间的变化关系曲线来表示动力转向的静特性,如图7-29所示。常将静特性曲线划分为四个区段。在输入转矩不大的时候,相当于图中段,是直线行驶位置附近小角度转向区,曲线呈低平形状,油压变化不大;汽车原地转向或调头时,输入转矩进入最大区段(图中C段),要求助力转向效果应当最大,故油压曲线呈陡而直状上升;B区段属常用快速转向行驶区段,要求助力作用要明显,油压曲线的斜率变化应较大,曲线由较为平缓变陡。除此之外,上述三个区段之间的油压曲线过渡要求平滑,D区段曲线就说明是一个较宽的平滑过渡区间。图4-5静特性曲线分段图要求动力转向器向右转和向左转的静特性曲线应对称。对称性可以评价滑阀的加工和装配质量。要求对称性大于O.85。第五章转向梯形转向梯形有整体式和断开式两种,选择整体式或断开式转向梯形方案与悬架采用何种方案有联系。无论采用哪一种方案,必须正确选择转向梯形参数,做到汽车转弯时,保证全部车轮绕一个瞬时转向中心行驶,使在不同圆周上运动的车轮,作无滑动的纯滚动运动。同时,为到达总体布置要求的最小转弯直径值,转向轮应有足够大的转角。5.1转向梯形结构方案分析整体式转向梯形整体式转向梯形是由转向横拉杆l,转向梯形臂2和汽车前轴3组成,如图5-1所示。其中梯形臂呈收缩状向后延伸。这种方案的优点是结构简单,调整前束容易,制造本钱低;主要缺点是一侧转向轮上、下跳动时,会影响另一侧转向轮。图5-1整体式转向梯形1.转向横拉杆2.转向梯形臂3.前轴当汽车前悬架采用非独立悬架时,应当采用整体式转向梯形。整体式转向梯形的横拉杆可位于前轴后或前轴前(称为前置梯形)。对于发动机位置低或前轮驱动汽车,常采用前置梯形。前置梯形的梯形臂必须向前外侧方向延伸,因而会与车轮或制动底板发生干预,所以在布置上有困难。为了保护横拉杆免遭路面不平物的损伤,横拉杆的位置应尽可能布置得高些,至少不低于前轴高度。断开式转向梯形转向梯形的横拉杆做成断开的,称之为断开式转向梯形。断开式转向梯形方案之一如图5-2所示。断开式转向梯形的主要优点是它与前轮采用独立悬架相配合,能够保证一侧车轮上、下跳动时,不会影响另一侧车轮;与整体式转向梯形比拟,由于杆系、球头增多,所以结构复杂,制造本钱高,并且调整前束比拟困难。图5-2断开式转向梯形横拉杆上断开点的位置与独立悬架形式有关。采用双横臂独立悬架,常用图解法(基于三心定理)确定断开点的位置。其求法如下(图5-3b):〔1)延长与,交于立柱AB的瞬心P点,由P点作直线PS。S点为转向节臂球销中心在悬架杆件(双横臂)所在平面上的投影。当悬架摇臂的轴线斜置时,应以垂直于摇臂轴的平面作为当量平面进行投影和运动分析。〔2〕延长直线AB与,交于点,连直线。(3)连接S和B点,延长直线SB。(4)作直线,使直线与间夹角等于直线与PS间的夹角。当S点低于A点时,线应低于线。(5)延长PS与,相交于D点,此D点便是横拉杆铰接点(断开点)的理想的位置。以上是在前轮没有转向的情况下,确定断开点D位置的方法。此外,还要对车轮向左转和向右转的几种不同的工况进行校核。图解方法同上,但S点的位置变了;当车轮转向时,可认为S点沿垂直于主销中心线AB的平面上画弧(不计主销后倾角)。如果用这种方法所得到的横拉杆长度在不同转角下都相同或十分接近,那么不仅在汽车直线行驶时,而且在转向时,车轮的跳动都不会对转向产生影响。双横臂互相平行的悬架能满足此要求,见图5-3a和c5.2整体式转向梯形机构优化设计汽车转向行驶时,受弹性轮胎侧偏角的影响,图5-3断开点确实定所有车轮不是绕位于后轴沿长线上的点滚动,而是绕位于前轴和后轴之间的汽车内侧某一点滚动。此点位置与前轮和后轮的侧偏角大小有关。因影响轮胎侧偏角的因素很多,且难以精确确定,故下面是在忽略侧偏角影响的条件下,分析有关两轴汽车的转向问题。此时,两转向前轮轴线的延长线应交在后轴延长线上,如图7-33所示。设、。分别为内、外转向车轮转角,L为汽车轴距,K为两主销中心线延长线到地面交点之间的距离。假设要保证全部车轮绕一个瞬时转向中心行驶,那么梯形机构应保证内、外转向车轮的转角有如下关系………(5-1)假设自变角为,那么因变角的期望值为………(5-2)图5-4理想的内、外车轮转角关系简图现有转向梯形机构仅能近似满足上式关系。以图7-33所示的后置梯形机构为例,在图上作辅助用虚线,利用余弦定理可推得转向

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论