




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年河北省保定市乐凯中学中考数学考试模拟冲刺卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图是抛物线y=ax2+bx+c(a≠0)的图象的一部分,抛物线的顶点坐标是A(1,4),与x轴的一个交点是B(3,0),下列结论:①abc>0;②2a+b=0;③方程ax2+bx+c=4有两个相等的实数根;④抛物线与x轴的另一个交点是(﹣2.0);⑤x(ax+b)≤a+b,其中正确结论的个数是()A.4个 B.3个 C.2个 D.1个2.如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字6、7、8、1.若转动转盘一次,转盘停止后(当指针恰好指在分界线上时,不记,重转),指针所指区域的数字是奇数的概率为()A.12 B.14 C.13.分式有意义,则x的取值范围是()A.x≠2 B.x=0 C.x≠﹣2 D.x=﹣74.方程的解为()A.x=4 B.x=﹣3 C.x=6 D.此方程无解5.如图所示的几何体,上下部分均为圆柱体,其左视图是()A. B. C. D.6.如图,已知l1∥l2,∠A=40°,∠1=60°,则∠2的度数为()A.40° B.60° C.80° D.100°7.在平面直角坐标系中,正方形A1B1C1D1、D1E1E2B2、A2B2C2D2、D2E3E4B3…按如图所示的方式放置,其中点B1在y轴上,点C1、E1、E2、C2、E3、E4、C3…在x轴上,已知正方形A1B1C1D1的边长为l,∠B1C1O=60°,B1C1∥B2C2∥B3C3…,则正方形A2017B2017C2017D2017的边长是()A.(12)2016B.(12)2017C.(33)2016D.(8.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2a,b+1),则a与b的数量关系为()A.a=b B.2a+b=﹣1 C.2a﹣b=1 D.2a+b=19.要整齐地栽一行树,只要确定两端的树坑的位置,就能确定这一行树坑所在的直线,这里用到的数学知识是()A.两点之间的所有连线中,线段最短B.经过两点有一条直线,并且只有一条直线C.直线外一点与直线上各点连接的所有线段中,垂线段最短D.经过一点有且只有一条直线与已知直线垂直10.如图,在四边形ABCD中,∠A=120°,∠C=80°.将△BMN沿着MN翻折,得到△FMN.若MF∥AD,FN∥DC,则∠F的度数为()A.70° B.80° C.90° D.100°二、填空题(共7小题,每小题3分,满分21分)11.如图,菱形OABC的顶点O是原点,顶点B在y轴上,菱形的两条对角线的长分别是6和4,反比例函数的图象经过点C,则k的值为.12.如图,在平面直角坐标系中,矩形OACB的顶点O是坐标原点,顶点A、B分别在x轴、y轴的正半轴上,OA=3,OB=4,D为边OB的中点.若E为边OA上的一个动点,当△CDE的周长最小时,则点E的坐标____________.13.如图,AE是正八边形ABCDEFGH的一条对角线,则∠BAE=°.14.如图,在平面直角坐标系中,⊙P的圆心在x轴上,且经过点A(m,﹣3)和点B(﹣1,n),点C是第一象限圆上的任意一点,且∠ACB=45°,则⊙P的圆心的坐标是_____.15.抛物线y=ax2+bx+c的顶点为D(-1,2),与x轴的一个交点A在点(-3,1)和(-2,1)之间,其部分图象如图,则以下结论:①b2-4ac<1;②当x>-1时y随x增大而减小;③a+b+c<1;④若方程ax2+bx+c-m=1没有实数根,则m>2;
⑤3a+c<1.其中,正确结论的序号是________________.16.计算:________.17.如图,在矩形ABCD中,E是AD边的中点,,垂足为点F,连接DF,分析下列四个结论:∽;;;其中正确的结论有______.三、解答题(共7小题,满分69分)18.(10分)如图山坡上有一根旗杆AB,旗杆底部B点到山脚C点的距离BC为米,斜坡BC的坡度i=1:.小明在山脚的平地F处测量旗杆的高,点C到测角仪EF的水平距离CF=1米,从E处测得旗杆顶部A的仰角为45°,旗杆底部B的仰角为20°.(1)求坡角∠BCD;(2)求旗杆AB的高度.(参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)19.(5分)为了预防“甲型H1N1”,某学校对教室采用药薰消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y(mg)与时间x(min)成正比例,药物燃烧后,y与x成反比例,如图所示,现测得药物8min燃毕,此时室内空气每立方米的含药量为6mg,请你根据题中提供的信息,解答下列问题:药物燃烧时,求y关于x的函数关系式?自变量x的取值范围是什么?药物燃烧后y与x的函数关系式呢?研究表明,当空气中每立方米的含药量低于1.6mg时,学生方可进教室,那么从消毒开始,至少需要几分钟后,学生才能进入教室?研究表明,当空气中每立方米的含药量不低于3mg且持续时间不低于10min时,才能杀灭空气中的毒,那么这次消毒是否有效?为什么?20.(8分)解不等式组请结合题意填空,完成本题的解答:(I)解不等式(1),得;(II)解不等式(2),得;(III)把不等式(1)和(2)的解集在数轴上表示出来:(IV)原不等式组的解集为.21.(10分)现有一次函数y=mx+n和二次函数y=mx2+nx+1,其中m≠0,若二次函数y=mx2+nx+1经过点(2,0),(3,1),试分别求出两个函数的解析式.若一次函数y=mx+n经过点(2,0),且图象经过第一、三象限.二次函数y=mx2+nx+1经过点(a,y1)和(a+1,y2),且y1>y2,请求出a的取值范围.若二次函数y=mx2+nx+1的顶点坐标为A(h,k)(h≠0),同时二次函数y=x2+x+1也经过A点,已知﹣1<h<1,请求出m的取值范围.22.(10分)如图,抛物线y=ax2+ax﹣12a(a<0)与x轴交于A、B两点(A在B的左侧),与y轴交于点C,点M是第二象限内抛物线上一点,BM交y轴于N.(1)求点A、B的坐标;(2)若BN=MN,且S△MBC=,求a的值;(3)若∠BMC=2∠ABM,求的值.23.(12分)如图,是等腰三角形,,.(1)尺规作图:作的角平分线,交于点(保留作图痕迹,不写作法);(2)判断是否为等腰三角形,并说明理由.24.(14分)已知抛物线经过点,.把抛物线与线段围成的封闭图形记作.(1)求此抛物线的解析式;(2)点为图形中的抛物线上一点,且点的横坐标为,过点作轴,交线段于点.当为等腰直角三角形时,求的值;(3)点是直线上一点,且点的横坐标为,以线段为边作正方形,且使正方形与图形在直线的同侧,当,两点中只有一个点在图形的内部时,请直接写出的取值范围.
参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】
通过图象得到、、符号和抛物线对称轴,将方程转化为函数图象交点问题,利用抛物线顶点证明.【详解】由图象可知,抛物线开口向下,则,,抛物线的顶点坐标是,抛物线对称轴为直线,,,则①错误,②正确;方程的解,可以看做直线与抛物线的交点的横坐标,由图象可知,直线经过抛物线顶点,则直线与抛物线有且只有一个交点,则方程有两个相等的实数根,③正确;由抛物线对称性,抛物线与轴的另一个交点是,则④错误;不等式可以化为,抛物线顶点为,当时,,故⑤正确.故选:.【点睛】本题是二次函数综合题,考查了二次函数的各项系数与图象位置的关系、抛物线对称性和最值,以及用函数的观点解决方程或不等式.2、A【解析】
转盘中4个数,每转动一次就要4种可能,而其中是奇数的有2种可能.然后根据概率公式直接计算即可【详解】奇数有两种,共有四种情况,将转盘转动一次,求得到奇数的概率为:P(奇数)=24=1【点睛】此题主要考查了几何概率,正确应用概率公式是解题关键.3、A【解析】
直接利用分式有意义则分母不为零进而得出答案.【详解】解:分式有意义,则x﹣1≠0,解得:x≠1.故选:A.【点睛】此题主要考查了分式有意义的条件,正确把握分式的定义是解题关键.当分母不等于零时,分式有意义;当分母等于零时,分式无意义.分式是否有意义与分子的取值无关.4、C【解析】
先把分式方程化为整式方程,求出x的值,代入最简公分母进行检验.【详解】方程两边同时乘以x-2得到1-(x-2)=﹣3,解得x=6.将x=6代入x-2得6-2=4,∴x=6就是原方程的解.故选C【点睛】本题考查的是解分式方程,熟知解分式方程的基本步骤是解答此题的关键.5、C【解析】试题分析:∵该几何体上下部分均为圆柱体,∴其左视图为矩形,故选C.考点:简单组合体的三视图.6、D【解析】
根据两直线平行,内错角相等可得∠3=∠1,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】解:∵l1∥l2,∴∠3=∠1=60°,∴∠2=∠A+∠3=40°+60°=100°.故选D.【点睛】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并准确识图是解题的关键.7、C【解析】利用正方形的性质结合锐角三角函数关系得出正方形的边长,进而得出变化规律即可得出答案.解:如图所示:∵正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3…∴D1E1=B2E2,D2E3=B3E4,∠D1C1E1=∠C2B2E2=∠C3B3E4=30°,∴D1E1=C1D1sin30°=,则B2C2===()1,同理可得:B3C3==()2,故正方形AnBnCnDn的边长是:()n﹣1.则正方形A2017B2017C2017D2017的边长是:()2.故选C.“点睛”此题主要考查了正方形的性质以及锐角三角函数关系,得出正方形的边长变化规律是解题关键.8、B【解析】试题分析:根据作图方法可得点P在第二象限角平分线上,则P点横纵坐标的和为0,即2a+b+1=0,∴2a+b=﹣1.故选B.9、B【解析】
本题要根据过平面上的两点有且只有一条直线的性质解答.【详解】根据两点确定一条直线.故选:B.【点睛】本题考查了“两点确定一条直线”的公理,难度适中.10、B【解析】
首先利用平行线的性质得出∠BMF=120°,∠FNB=80°,再利用翻折变换的性质得出∠FMN=∠BMN=60°,∠FNM=∠MNB=40°,进而求出∠B的度数以及得出∠F的度数.【详解】∵MF∥AD,FN∥DC,∠A=120°,∠C=80°,
∴∠BMF=120°,∠FNB=80°,
∵将△BMN沿MN翻折得△FMN,
∴∠FMN=∠BMN=60°,∠FNM=∠MNB=40°,
∴∠F=∠B=180°-60°-40°=80°,
故选B.【点睛】主要考查了平行线的性质以及多边形内角和定理以及翻折变换的性质,得出∠FMN=∠BMN,∠FNM=∠MNB是解题关键.二、填空题(共7小题,每小题3分,满分21分)11、-6【解析】
分析:∵菱形的两条对角线的长分别是6和4,∴A(﹣3,2).∵点A在反比例函数的图象上,∴,解得k=-6.【详解】请在此输入详解!12、(1,0)【解析】分析:由于C、D是定点,则CD是定值,如果的周长最小,即有最小值.为此,作点D关于x轴的对称点D′,当点E在线段CD′上时的周长最小.详解:如图,作点D关于x轴的对称点D′,连接CD′与x轴交于点E,连接DE.若在边OA上任取点E′与点E不重合,连接CE′、DE′、D′E′由DE′+CE′=D′E′+CE′>CD′=D′E+CE=DE+CE,可知△CDE的周长最小,∵在矩形OACB中,OA=3,OB=4,D为OB的中点,∴BC=3,D′O=DO=2,D′B=6,∵OE∥BC,∴Rt△D′OE∽Rt△D′BC,有∴OE=1,∴点E的坐标为(1,0).故答案为:(1,0).点睛:考查轴对称-最短路线问题,坐标与图形性质,相似三角形的判定与性质等,找出点E的位置是解题的关键.13、67.1【解析】试题分析:∵图中是正八边形,∴各内角度数和=(8﹣2)×180°=1080°,∴∠HAB=1080°÷8=131°,∴∠BAE=131°÷2=67.1°.故答案为67.1.考点:多边形的内角14、(2,0)【解析】【分析】作辅助线,构建三角形全等,先根据同弧所对的圆心角是圆周角的二倍得:∠APB=90°,再证明△BPE≌△PAF,根据PE=AF=3,列式可得结论.【详解】连接PB、PA,过B作BE⊥x轴于E,过A作AF⊥x轴于F,∵A(m,﹣3)和点B(﹣1,n),∴OE=1,AF=3,∵∠ACB=45°,∴∠APB=90°,∴∠BPE+∠APF=90°,∵∠BPE+∠EBP=90°,∴∠APF=∠EBP,∵∠BEP=∠AFP=90°,PA=PB,∴△BPE≌△PAF,∴PE=AF=3,设P(a,0),∴a+1=3,a=2,∴P(2,0),故答案为(2,0).【点睛】本题考查了圆周角定理和坐标与图形性质,三角形全等的性质和判定,作辅助线构建三角形全等是关键.15、②③④⑤【解析】试题解析:∵二次函数与x轴有两个交点,∴b2-4ac>1,故①错误,观察图象可知:当x>-1时,y随x增大而减小,故②正确,∵抛物线与x轴的另一个交点为在(1,1)和(1,1)之间,∴x=1时,y=a+b+c<1,故③正确,∵当m>2时,抛物线与直线y=m没有交点,∴方程ax2+bx+c-m=1没有实数根,故④正确,∵对称轴x=-1=-,∴b=2a,∵a+b+c<1,∴3a+c<1,故⑤正确,故答案为②③④⑤.16、【解析】
根据二次根式的运算法则先算乘法,再将分母有理化,然后相加即可.【详解】解:原式==【点睛】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.17、【解析】
①证明∠EAC=∠ACB,∠ABC=∠AFE=90°即可;②由AD∥BC,推出△AEF∽△CBF,得到,由AE=AD=BC,得到,即CF=2AF;③作DM∥EB交BC于M,交AC于N,证明DM垂直平分CF,即可证明;④设AE=a,AB=b,则AD=2a,根据△BAE∽△ADC,得到,即b=a,可得tan∠CAD=.【详解】如图,过D作DM∥BE交AC于N,∵四边形ABCD是矩形,∴AD∥BC,∠ABC=90°,AD=BC,∵BE⊥AC于点F,∴∠EAC=∠ACB,∠ABC=∠AFE=90°,∴△AEF∽△CAB,故①正确;∵AD∥BC,∴△AEF∽△CBF,∴,∵AE=AD=BC,∴,即CF=2AF,∴CF=2AF,故②正确;作DM∥EB交BC于M,交AC于N,∵DE∥BM,BE∥DM,∴四边形BMDE是平行四边形,∴BM=DE=BC,∴BM=CM,∴CN=NF,∵BE⊥AC于点F,DM∥BE,∴DN⊥CF,∴DM垂直平分CF,∴DF=DC,故③正确;设AE=a,AB=b,则AD=2a,由△BAE∽△ADC,∴,即b=a,∴tan∠CAD=,故④错误;故答案为:①②③.【点睛】本题主要考查了相似三角形的判定和性质,矩形的性质,图形面积的计算以及解直角三角形的综合应用,正确的作出辅助线构造平行四边形是解题的关键.三、解答题(共7小题,满分69分)18、旗杆AB的高度为6.4米.【解析】分析:(1)根据坡度i与坡角α之间的关系为:i=tanα进行计算;(2)根据余弦的概念求出CD,根据正切的概念求出AG、BG,计算即可.本题解析:(1)∵斜坡BC的坡度i=1:,∴tan∠BCD=,∴∠BCD=30°;(2)在Rt△BCD中,CD=BC×cos∠BCD=6×=9,则DF=DC+CF=10(米),∵四边形GDFE为矩形,∴GE=DF=10(米),∵∠AEG=45°,∴AG=DE=10(米),在Rt△BEG中,BG=GE×tan∠BEG=10×0.36=3.6(米),则AB=AG−BG=10−3.6=6.4(米).答:旗杆AB的高度为6.4米。19、(1);(2)至少需要30分钟后生才能进入教室.(3)这次消毒是有效的.【解析】
(1)药物燃烧时,设出y与x之间的解析式y=k1x,把点(8,6)代入即可,从图上读出x的取值范围;药物燃烧后,设出y与x之间的解析式y=,把点(8,6)代入即可;(2)把y=1.6代入反比例函数解析式,求出相应的x;(3)把y=3代入正比例函数解析式和反比例函数解析式,求出相应的x,两数之差与10进行比较,大于或等于10就有效.【详解】解:(1)设药物燃烧时y关于x的函数关系式为y=k1x(k1>0)代入(8,6)为6=8k1∴k1=设药物燃烧后y关于x的函数关系式为y=(k2>0)代入(8,6)为6=,∴k2=48∴药物燃烧时y关于x的函数关系式为(0≤x≤8)药物燃烧后y关于x的函数关系式为(x>8)∴(2)结合实际,令中y≤1.6得x≥30即从消毒开始,至少需要30分钟后生才能进入教室.(3)把y=3代入,得:x=4把y=3代入,得:x=16∵16﹣4=12所以这次消毒是有效的.【点睛】现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.20、(I)x≥1;(Ⅱ)x>2;(III)见解析;(Ⅳ)x≥1.【解析】
分别求出每一个不等式的解集,将不等式解集表示在数轴上即可得出两不等式解集的公共部分,从而确定不等式组的解集.【详解】(I)解不等式(1),得x≥1;(Ⅱ)解不等式(2),得x>2;(Ⅲ)把不等式(1)和(2)解集在数轴上表示出来,如下图所示:(Ⅳ)原不等式组的解集为x≥1.【点睛】此题考查了解一元一次不等式组,以及在数轴上表示不等式的解集,准确求出每个不等式的解集是解本题的关键.21、(1)y=x﹣2,y=x2++1;(2)a<;(3)m<﹣2或m>1.【解析】
(1)直接将点代入函数解析式,用待定系数法即可求解函数解析式;(2)点(2,1)代入一次函数解析式,得到n=−2m,利用m与n的关系能求出二次函数对称轴x=1,由一次函数经过一、三象限可得m>1,确定二次函数开口向上,此时当y1>y2,只需让a到对称轴的距离比a+1到对称轴的距离大即可求a的范围.(3)将A(h,k)分别代入两个二次函数解析式,再结合对称抽得h=,将得到的三个关系联立即可得到,再由题中已知−1<h<1,利用h的范围求出m的范围.【详解】(1)将点(2,1),(3,1),代入一次函数y=mx+n中,,解得,∴一次函数的解析式是y=x﹣2,再将点(2,1),(3,1),代入二次函数y=mx2+nx+1,,解得,∴二次函数的解析式是.(2)∵一次函数y=mx+n经过点(2,1),∴n=﹣2m,∵二次函数y=mx2+nx+1的对称轴是x=,∴对称轴为x=1,又∵一次函数y=mx+n图象经过第一、三象限,∴m>1,∵y1>y2,∴1﹣a>1+a﹣1,∴a<.(3)∵y=mx2+nx+1的顶点坐标为A(h,k),∴k=mh2+nh+1,且h=,又∵二次函数y=x2+x+1也经过A点,∴k=h2+h+1,∴mh2+nh+1=h2+h+1,∴,又∵﹣1<h<1,∴m<﹣2或m>1.【点睛】本题考点:点与函数的关系;二次函数的对称轴与函数值关系;待定系数法求函数解析式;不等式的解法;数形结合思想是解决二次函数问题的有效方法.22、(1)A(﹣4,0),B(3,0);(2);(3).【解析】
(1)设y=0,可求x的值,即求A,B的坐标;(2)作MD⊥x轴,由CO∥MD可得OD=3,把x=-3代入解析式可得M点坐标,可得ON的长度,根据S△BMC=,可求a的值;(3)过M点作ME∥AB,设NO=m,=k,可以用m,k表示CO,EO,MD,ME,可求M点坐标,代入可得k,m,a的关系式,由CO=2km+m=-12a,可得方程组,解得k,即可求结果.【详解】(1)设y=0,则0=ax2+ax﹣12a(a<0),∴x1=﹣4,x2=3,∴A(﹣4,0),B(3,0)(2)如图1,作MD⊥x轴,∵MD⊥x轴,OC⊥x轴,∴MD∥OC,∴=且NB=MN,∴OB=OD=3,∴D(﹣3,0),∴当x=﹣3时,y=﹣6a,∴M(﹣3,﹣6a),∴MD=﹣6a,∵ON∥MD∴,∴ON=﹣3a,根据题意得:C(0,﹣12a),∵S△MBC=,∴(﹣12a+3a)×6=,a=﹣,(3)如图2:过M点作ME∥AB,∵ME∥AB,∴∠EMB=∠ABM且∠CMB=2∠ABM,∴∠CME=∠NME,且ME=ME,∠CEM=∠NEM=90°,∴△CME≌△MNE,∴CE=EN,设NO=m,=k(k>0),∵ME∥AB,∴==k,∴ME=3k,EN=km=CE,∴EO=km+m,CO=CE+EN+ON=2km+m=﹣12a,即,∴M(﹣3k,km+m),∴km+m=a(9k2﹣3k﹣12),(k+1)×=(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论