版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2020-2021学年江苏省苏州市高一(上)期末数学试卷一、选择题(共8小题).1.设有下面四个命题:p1:∃x∈R,x2+1<0;p2:∀x∈R,x+|x|>0;p3:∀x∈Z,|x|∈N;p4:∃x∈R,x2﹣2x+3=0.其中真命题为()A.p1 B.p2 C.p3 D.p42.已知角α终边上一点P的坐标为(﹣1,2),则cosα的值为()A.﹣ B.﹣ C. D.3.对于集合A,B,我们把集合{x|x∈A且x∉B}叫作集合A与B的差集,记作A﹣B.若A={x|lnx≤2ln},B={x|x≥1},则A﹣B为()A.{x|x<1} B.{x|0<x<1} C.{x|1≤x<3} D.{x|1≤x≤3}4.下列四个函数中,以π为最小正周期且在区间(,π)上单调递增的函数是()A.y=sin2x B.y=cosx C.y=tanx D.y=cos5.“双十一”期间,甲、乙两个网购平台对原价相同的某种商品进行打折促销活动,各进行了两次降价.甲平台第一次降价a%,第二次降价b%;乙平台两次都降价%(其中0<a<b<20),则两个平台的降价力度()A.甲大 B.乙大 C.一样大 D.大小不能确定6.已知函数f(x)的图象如图所示,则函数y=xf(x)的图象可能是()A. B. C. D.7.若θ为第二象限角,则﹣化简为()A.2tanθ B. C.﹣2tanθ D.﹣8.已知函数f(x)=,若函数y=f(f(x))﹣k有3个不同的零点,则实数k的取值范围是()A.(1,4) B.(1,4] C.[1,4) D.[1,4]二、多项选择题(共4小题).9.已知幂函数f(x)的图象经过点(3,),则()A.f(x)的定义域为[0,+∞) B.f(x)的值域为[0,+∞) C.f(x)是偶函数 D.f(x)的单调增区间为[0,+∞)10.为了得到函数y=cos(2x+)的图象,只要把函数y=cosx图象上所有的点()A.向左平移个单位长度,再将横坐标变为原来的2倍 B.向左平移个单位长度,再将横坐标变为原来的倍 C.横坐标变为原来的倍,再向左平移个单位长度 D.横坐标变为原来的倍,再向左平移个单位长度11.已知实数a,b,c满足0<a<1<b<c,则()A.ba<ca B.logba>logca C.< D.sinb<sinc12.高斯是德国著名数学家,近代数学奠基者之一,享有“数学王子”称号,他和阿基米德、牛顿并列为世界三大数学家,用其名字命名的“高斯函数”为:设x∈R,用[x]表示不超过x的最大整数,则y=[x]称为高斯函数,例如[﹣2.1]=﹣3,[2.1]=2.已知函数f(x)=sin|x|+|sinx|,函数g(x)=[f(x)],则()A.函数g(x)的值域是{0,1,2} B.函数g(x)是周期函数 C.函数g(x)的图象关于x=对称 D.方程•g(x)=x只有一个实数根三、填空题(共4小题).13.函数f(x)=+lg(2﹣x)的定义域为.14.关于x的方程sinx+x﹣3=0的唯一解在区间(k﹣,k+)(k∈Z)内,则k的值为.15.已知a,b为正实数,且ab+a+3b=9,则a+3b的最小值为.16.当生物死亡后,它机体内原有的碳14含量会按定的比率衰减(称为衰减率),大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”.若生物体内原有的碳14含量为A,按照上述变化规律,生物体内碳14含量y与死亡年数x的函数关系式是,考古学家在对考古活动时挖掘到的某生物标本进行研究,发现该生物体内碳14的含量是原来的62.5%,则可以推测该生物的死亡时间距今约年.(参考数据:lg2≈0.3)四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)在条件①=;②4sin2A=4cosA+1;③sinAcosAtanA=中任选一个,补充在下面的问题中,并求解.已知角A为锐角,_____.(1)求角A的大小;(2)求sin(π+A)cos(﹣A)的值.18.(12分)已知集合A={x|x2﹣2x﹣3<0},B={x||x﹣a|<1}.(1)当a=3时,求A∪B;(2)设p:x∈A,q:x∈B,若p是q的必要不充分条件,求实数a的取值范围.19.(12分)已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<)的图象经过点(,),其最大值与最小值的差为4,且相邻两个零点之间的距离为.(1)求f(x)的解析式;(2)求f(x)在[0,π]上的单调增区间.20.(12分)已知定义在R上的函数f(x)=2x+k•2﹣x(k∈R).(1)若f(x)是奇函数,求函数y=f(x)+f(2x)的零点;(2)是否存在实数k,使f(x)在(﹣∞,﹣1)上调递减且在(2,+∞)上单调递增?若存在,求出k的取值范围;若不存在,请说明理由.21.(12分)经多次实验得到某种型号的汽车每小时耗油量Q(单位:L)、百公里耗油量W(单位:L)与速度v(单位:km/h)(40≤v≤120)的数据关系如表:v406090100120Q5.268.3251015.6W139.25为描述Q与v的关系,现有以下三种模型供选择Q(v)=0.5v+a,Q(v)=av+b,Q(v)=av3+bv2+cv.(1)请填写表格空白处的数据,选出你认为最符合实际的函数模型,并求出相应的函数解析式;(2)已知某高速公路共有三个车道,分别是外侧车道、中间车道和内侧车道,车速范围分别是[60,90),[90,110),[110,120](单位:km/h),问:该型号汽车应在哪个车道以什么速度行驶时W最小?22.(12分)已知函数f(x)和g(x)的定义域分别为D1和D2,若足对任意x0∈D1,恰好存在n个不同的实数x1,x2…,xn∈D2,使得g(xi)=f(x0)(其中i=1,2,……,n,n∈N*),则称g(x)为f(x)的“n重覆盖函数.”(1)判断g(x)=|x﹣1|(x∈[0,4])是否为f(x)=x+2(x∈[0,1])的“n重覆盖函数”,如果是,求出n的值;如果不是,说明理由.(2)若g(x)=为f(x)=的“2重覆盖函数”,求实数a的取值范围;(3)若g(x)=sin(ωx﹣)(x∈[0,2π])为f(x)=的“2k+1重覆盖函数”(其中k∈N),请直接写出正实数ω的取值范围(用k表示)(无需解答过程).
参考答案一、单项选择题(共8小题).1.设有下面四个命题:p1:∃x∈R,x2+1<0;p2:∀x∈R,x+|x|>0;p3:∀x∈Z,|x|∈N;p4:∃x∈R,x2﹣2x+3=0.其中真命题为()A.p1 B.p2 C.p3 D.p4解:设有下面四个命题:对于p1:∃x∈R,x2+1<0不成立,故该命题为假命题;p2:∀x∈R,当x<0时,x+|x|=0,故该命题为假命题;p3:∀x∈Z,|x|∈N,该命题为真命题;p4:∃x∈R,由于x2﹣2x+3=0中△=4﹣12=﹣8<0,故不存在实根,故该命题为假命题;故选:C.2.已知角α终边上一点P的坐标为(﹣1,2),则cosα的值为()A.﹣ B.﹣ C. D.解:由题意,点(﹣1,2)到原点的距离是,=故cosα==﹣故选:B.3.对于集合A,B,我们把集合{x|x∈A且x∉B}叫作集合A与B的差集,记作A﹣B.若A={x|lnx≤2ln},B={x|x≥1},则A﹣B为()A.{x|x<1} B.{x|0<x<1} C.{x|1≤x<3} D.{x|1≤x≤3}解:集合A={x|lnx≤2ln}={x|0<x≤3},B={x|x≥1},A﹣B={x|0<x<1}.故选:B.4.下列四个函数中,以π为最小正周期且在区间(,π)上单调递增的函数是()A.y=sin2x B.y=cosx C.y=tanx D.y=cos解:函数y=sin2x的周期为,又x∈(,π),则2x∈(π,2π),所以y=sin2x在区间(,π)上不是单调递增,故选项A错误;函数y=cosx的周期为2π,故选项B错误;函数y=tanx的周期为π,且在区间(,π)上单调递增,故选项C正确;函数的周期为,故选项D错误.故选:C.5.“双十一”期间,甲、乙两个网购平台对原价相同的某种商品进行打折促销活动,各进行了两次降价.甲平台第一次降价a%,第二次降价b%;乙平台两次都降价%(其中0<a<b<20),则两个平台的降价力度()A.甲大 B.乙大 C.一样大 D.大小不能确定解:由题意可知,甲平台的降价力度为:1﹣(1﹣a%)(1﹣b%),乙平台的降价力度为:1﹣(1﹣%)2,作差得:[1﹣(1﹣a%)(1﹣b%)]﹣[1﹣(1﹣%)2]=(%)2﹣a%•b%=﹣2<0,所以乙平台的降价力度大,故选:B.6.已知函数f(x)的图象如图所示,则函数y=xf(x)的图象可能是()A. B. C. D.解:由图象可知,函数f(x)是偶函数,则y=xf(x)为奇函数,则图象关于原点对称,排除C,D,在原点的右侧,函数值为先负后正,故排除B,故选:A.7.若θ为第二象限角,则﹣化简为()A.2tanθ B. C.﹣2tanθ D.﹣解:∵θ为第二象限角,∴sinθ>0,∴原式=﹣=﹣==﹣.故选:D.8.已知函数f(x)=,若函数y=f(f(x))﹣k有3个不同的零点,则实数k的取值范围是()A.(1,4) B.(1,4] C.[1,4) D.[1,4]解:函数f(x)=,当x时,f(f(x))=(x2﹣3)2﹣3,当时,f(f(x))=﹣(x2﹣3)+1,当x<0时,f(f(x))=(﹣x+1)2﹣3,作出函数f(f(x))的图象可知,当1<k≤4时,函数y=f(f(x))﹣k有3个不同的零点.∴k∈(1,4].故选:C.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.已知幂函数f(x)的图象经过点(3,),则()A.f(x)的定义域为[0,+∞) B.f(x)的值域为[0,+∞) C.f(x)是偶函数 D.f(x)的单调增区间为[0,+∞)解:设幂函数f(x)=xa,∵f(x)过点(3,),∴3a=,a=,∴f(x)=,故函数的定义域是[0,+∞),A正确,C错误,值域是[0,+∞),B正确,D正确,故选:ABD.10.为了得到函数y=cos(2x+)的图象,只要把函数y=cosx图象上所有的点()A.向左平移个单位长度,再将横坐标变为原来的2倍 B.向左平移个单位长度,再将横坐标变为原来的倍 C.横坐标变为原来的倍,再向左平移个单位长度 D.横坐标变为原来的倍,再向左平移个单位长度解:把函数y=cosx图象上所有的点向左平移个单位长度,可得y=cos(x+)的图象;再将横坐标变为原来的倍,可得y=cos(2x+)的图象.或把函数y=cosx图象上所有的点横坐标变为原来的倍,得到y=cos2x的图象;再向左平移个单位长度,可得y=cos(2x+)的图象.故选:BC.11.已知实数a,b,c满足0<a<1<b<c,则()A.ba<ca B.logba>logca C.< D.sinb<sinc解:因为实数a,b,c满足0<a<1<b<c,则函数y=xa为单调递增函数,所以ba<ca,故选项A正确;不妨取,则logba=,logca=,所以logba<logca,故选项B错误;不妨取,则,,所以,故选项C正确;因为b和c所对应的角是哪一个象限角不确定,故sinb和sinc无法比较大小,故选项D错误.故选:AC.12.高斯是德国著名数学家,近代数学奠基者之一,享有“数学王子”称号,他和阿基米德、牛顿并列为世界三大数学家,用其名字命名的“高斯函数”为:设x∈R,用[x]表示不超过x的最大整数,则y=[x]称为高斯函数,例如[﹣2.1]=﹣3,[2.1]=2.已知函数f(x)=sin|x|+|sinx|,函数g(x)=[f(x)],则()A.函数g(x)的值域是{0,1,2} B.函数g(x)是周期函数 C.函数g(x)的图象关于x=对称 D.方程•g(x)=x只有一个实数根解:f(﹣x)=sin|﹣x|+|sin(﹣x)|=sin|x|+|sinx|=f(x),所以f(x)是偶函数,而sin|x|不是周期函数,|sinx|为周期函数,对于x>0,当2kπ<x<π+2kπ时,f(x)=2sinx,当π+2kπ<x<2π+2kπ时,f(x)=0,所以g(x)=,k=0,±1,±2,…,故A正确,由f(x)是偶函数,则g(x)为偶函数,x>0时,f(x)成周期性,但起点为x=0,所以g(x)在(﹣∞,+∞)上不是周期函数,故B不正确;函数g(x)的图象关于x=0对称,不关于x=对称,故C不正确;,当x=0时,g(0)=0,当x=时,g()=1,与g(x)只有(0,0)交点即方程•g(x)=x只有一个实数根,故D正确.故选:AD.三、填空题(共4小题).13.函数f(x)=+lg(2﹣x)的定义域为[1,2).解:要使函数的解析式有意义,自变量x须满足:解得:1≤x<2.故函数的定义域为[1,2)故答案为[1,2)14.关于x的方程sinx+x﹣3=0的唯一解在区间(k﹣,k+)(k∈Z)内,则k的值为2.解:设f(x)=sinx+x﹣3,f()=sin+﹣3=sin﹣<0,f()=sin+﹣3=sin﹣=sin﹣sin>0,(,所以sin>sin).由零点定理知,f(x)在区间(,)内一定有零点,所以k=2.故答案为:2.15.已知a,b为正实数,且ab+a+3b=9,则a+3b的最小值为6.解:因为a,b为正实数,且ab+a+3b=9,所以a+3b=9﹣ab=9﹣,当且仅当a=3b时取等号,解得,a+3b≥6或a+3b≤﹣18(舍),则a+3b的最小值为6.故答案为:6.16.当生物死亡后,它机体内原有的碳14含量会按定的比率衰减(称为衰减率),大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”.若生物体内原有的碳14含量为A,按照上述变化规律,生物体内碳14含量y与死亡年数x的函数关系式是y=A•,考古学家在对考古活动时挖掘到的某生物标本进行研究,发现该生物体内碳14的含量是原来的62.5%,则可以推测该生物的死亡时间距今约3820年.(参考数据:lg2≈0.3)解:由题意知,y=A•,当y=62.5%A时,有62.5%A=A•,即=,∴===log28﹣log25=3﹣=3﹣≈,∴x=3820,∴可以推测该生物的死亡时间距今约3820年.故答案为:y=A•;3820.四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)在条件①=;②4sin2A=4cosA+1;③sinAcosAtanA=中任选一个,补充在下面的问题中,并求解.已知角A为锐角,_____.(1)求角A的大小;(2)求sin(π+A)cos(﹣A)的值.解:若选择条件①,(1)由于=,可得14sinA﹣7cosA=3sinA+4cosA,可得sinA=cosA,即tanA=1,因为A为锐角,可得A=;(2)sin(π+A)cos(﹣A)=(﹣sinA)cos(1010π+﹣A)=﹣sin2A=﹣.若选择②,(1)由于4sin2A=4cosA+1,4(1﹣cos2A)=4cosA+1,可得4cos2A+4cosx﹣3=0,解得cosA=,或﹣(舍去),因为A为锐角,可得A=.(2)sin(π+A)cos(﹣A)=(﹣sinA)cos(1010π+﹣A)=﹣sin2A=﹣.若选择③,(1)因为sinAcosAtanA=sin2A=,可得sinA=,或﹣,因为A为锐角,sinA>0,可得sinA=,可得A=;(2)sin(π+A)cos(﹣A)=(﹣sinA)cos(1010π+﹣A)=﹣sin2A=﹣.18.(12分)已知集合A={x|x2﹣2x﹣3<0},B={x||x﹣a|<1}.(1)当a=3时,求A∪B;(2)设p:x∈A,q:x∈B,若p是q的必要不充分条件,求实数a的取值范围.解:由题意得,A={x|﹣1<x<3},B={x|a﹣1<x<a+1}.(1)a=3时,B={x|2<x<4},∴A∪B={x|﹣1<x<4}=(﹣1,4).(2)因为p:x∈A,q:x∈B,若p是q的必要不充分条件,则A⫋B,所以(等号不能同时成立),经验证a≠2,解之得0≤a<2,所以实数a的取值范围是[0,2).19.(12分)已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<)的图象经过点(,),其最大值与最小值的差为4,且相邻两个零点之间的距离为.(1)求f(x)的解析式;(2)求f(x)在[0,π]上的单调增区间.解:(1)由题意可得A=2,T=π,所以ω==2,所以f(x)=2sin(2x+φ),又图象经过点(,),所以f()=2sin(2×+φ)=,即sin(+φ)=,因为|φ|<,所以φ=,所以f(x)=2sin(2x+).(2)令2kπ﹣≤2x+≤2kπ+,k∈Z,解得kπ﹣≤x≤kπ+,k∈Z,再根据x∈[0,π],可得函数的单调增区间为[0,],[,π].20.(12分)已知定义在R上的函数f(x)=2x+k•2﹣x(k∈R).(1)若f(x)是奇函数,求函数y=f(x)+f(2x)的零点;(2)是否存在实数k,使f(x)在(﹣∞,﹣1)上调递减且在(2,+∞)上单调递增?若存在,求出k的取值范围;若不存在,请说明理由.解:(1)因为f(x)是奇函数,所以f(﹣x)=﹣f(x),即2﹣x+k•2x=﹣2x﹣k•2﹣x,可得k=﹣1,所以f(x)=2x﹣2﹣x,令y=f(x)+f(2x)=2x﹣2﹣x+22x﹣2﹣2x=0,即(2x﹣2﹣x)(1+2x+2﹣x)=0,所以2x﹣2﹣x=0,解得x=0,即函数y=f(x)+f(2x)的零点为x=0.(2)当k≤0时,函数f(x)=2x+k•2﹣x在R上单调递增,不符合题意;当k>0时,令t=2x,当x∈(﹣∞,﹣1)时,t∈(0,),当x∈(2,+∞)时,t∈(4,+∞),因为f(x)在(﹣∞,﹣1)上单调递减且在(2,+∞)上单调递增,所以g(t)=t+在(0,)上单调递减且在(4,+∞)上单调递增,所以≤≤4,解得≤k≤16,故存在实数k∈[,16]使f(x)在(﹣∞,﹣1)上单调递减且在(2,+∞)上单调递增.21.(12分)经多次实验得到某种型号的汽车每小时耗油量Q(单位:L)、百公里耗油量W(单位:L)与速度v(单位:km/h)(40≤v≤120)的数据关系如表:v406090100120Q5.268.3251015.6W139.25为描述Q与v的关系,现有以下三种模型供选择Q(v)=0.5v+a,Q(v)=av+b,Q(v)=av3+bv2+cv.(1)请填写表格空白处的数据,选出你认为最符合实际的函数模型,并求出相应的函数解析式;(2)已知某高速公路共有三个车道,分别是外侧车道、中间车道和内侧车道,车速范围分别是[60,90),[90,110),[110,120](单位:km/h),问:该型号汽车应在哪个车道以什么速度行驶时W最小?解:(1)填表如下:v406090100120Q5.268.3251015.6W13109.251013由题意可得符合的函数模型需满足在40≤v≤120时,v都可取,三种模型都满足,且该函数模型应为增函数,所以第一种函数模型不符合,若选择第二种模型,代入(40,5.2),(60,6),得,解得,则Q(v)=0.04v+3.6,此时Q(90)=7.2,Q(100)=7.6,Q(120)=8.4,与实际数据相差较大,所以第二种模型不符合,经观察,第三种函数模型最符合
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025劳务合同的格式2
- 2025购房转让合同范文
- 2025工程车辆运输合同
- 2025年塑钢窗生产废弃物处理与资源化利用合同2篇
- 2025年度农机销售与农业信息化服务合同3篇
- 2025年度智慧城市交通管理系统公司成立协议书规范3篇
- 二零二五年度智慧医疗平台全新合作协议3篇
- 二零二五年度公司单位员工劳动合同解除与赔偿标准3篇
- 2025年度婚姻财产分配与子女权益保障协议3篇
- 二零二五年度建筑工程环境保护三方合同3篇
- 2022年最全工厂供电试题考试题习题库及参考答案
- 消毒供应室护理质量考核评分标准
- 《软件工程》教案(本科)
- 粗粒土和巨粒土最大干密度记录表及报告
- 爱丽丝梦游仙境话剧中英文剧本(共6页)
- 书法少年宫活动记录
- 表冷器性能计算书
- 走遍德国 A1(课堂PPT)
- 照明公司个人工作总结范文
- 热控专业施工质量验收范围划分表
- 2022年sppb简易体能状况量表
评论
0/150
提交评论