Engineering Basic Mechanics I Statics 工程基础力学Ⅰ 静力学 课件 Chapter 12 Combined Deformation_第1页
Engineering Basic Mechanics I Statics 工程基础力学Ⅰ 静力学 课件 Chapter 12 Combined Deformation_第2页
Engineering Basic Mechanics I Statics 工程基础力学Ⅰ 静力学 课件 Chapter 12 Combined Deformation_第3页
Engineering Basic Mechanics I Statics 工程基础力学Ⅰ 静力学 课件 Chapter 12 Combined Deformation_第4页
Engineering Basic Mechanics I Statics 工程基础力学Ⅰ 静力学 课件 Chapter 12 Combined Deformation_第5页
已阅读5页,还剩55页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

StaticsStaticsofdeformablebodyChapter12

CombinedDeformation

12.1Introduction12.2Skewbending12.3Combinedaxialloadandbending12.4CombinedbendingandtorsionContents12.1Introduction1.EngineeringexamplesCombinedcompressiveandbendingdeformationCombinedtensileandbendingdeformationcolumnofdrillingmachineCombinedbendingandtorsionaldeformationCombinedcompressiveandbendingdeformationcombineddeformationthedeformationoftenincludesmorethantwobasicdeformations.Forexample:purlinsontheroofframe(skewbending)Fyzq2.Theapproximatestepsforstrengthcalculationofcombineddeformationdecompose+superimposeSimplifyordecomposetheexternalforceintoseveralsimpleforms.Drawtheinternalforcesforeachbasicdeformationandfindthelocationofpossibledangeroussections.Thengivethedistributionofstressesinthedangeroussections.Findthelocationofthedangerpointbasedonthestressdistributioninthedangersection.Usetheprincipleofsuperpositiontodeterminethestressstateatthedangerpoint.Accordingtothestressstateofthedangerpoint,establishthecorrespondingstrengthconditionsandperformstrengthcalculations.12.2SkewbendingPurlinsplaceddiagonallyontheroofframezFjyyjzFyF(b)yzxo(c)oyzxzFTakeacantileverbeamwithrectangularsectionasanexample1.InternalforcesandstressesdecomposeFalongtheprincipalaxisbendingmoments:whereM=F(l-x)isthetotalbendingmomentoftheforceFtothecross-sectionm-m.ommyyFzjz(a)lxxThedirectionsofMyandMz

areshowninFigurea.normalbendingstresscausedbyMz:normalbendingstresscausedbyMy:(b)yzs¢Mz(a)xmyDyMzMm(c)yzs¢¢MyCausedbyCausedby(12-1)Whetherσ'andσ''aretensileorcompressivestressescanbedeterminedbythedeformationofthebarinthespecificproblem.Atthesamepointthesetwostressesareco-linearvectors,andbythesuperpositionprinciplewehave(b)yzs¢Mz(a)xmyDyMzMm(c)yzs¢¢MyCausedbyCausedbyExampleThecantileverbeamshownintheFigureissubjectedtohorizontalforceF1andaperpendicularforceF2attwodifferentsections.F1=800N,F2=1650N,l=2m.Trytofindthemaximumnormalstressinthebeamanditslocationforthefollowingtwocases.(1)Thebeamhasarectangularcrosssectionwithawidthandheightofb=9cm,h=18cm.(2)Thebeamhascircularsectionofdiameterd=13cm.2F1m1md1Fzy2F1m1m1FxObhsolution

RectangularcrosssectioncausedbyF2causedbyF1

Superimposetwostresseszy2F1m1m1FxObh(2)Circularcrosssection:Letthecoordinatesofthedangerpointbe(y,z)causedbyF2causedbyF1

2F1m1md1FSuperimposetwostressesfrom

,wehaveso2.MaximumnormalstressandstrengthconditionsThelinewherethenormalstressiszeroiscalledtheneutralaxisonthesection.Ifthepointontheneutralaxisismarkedas(y0,z0),thenlet

σ=0,Theequationfortheneutralaxiscanbeobtainedas(12-2)yzjp1D2D(a)neutralaxisItcanbeseenthattheneutralaxisisalinepassingthroughthecentroidofthesection.Thepointfurthestfromtheneutralaxishasthehighestnormalstressandisthedangerpoint(D1

andD2).yzjF1D2D(a)neutralaxisThestepsforstrengthcalculation:Determiningthelocationofdangeroussectionsbasedoninternalforces.Calculatethemaximumnormalstressonthedangeroussection,thatis,thenormalstressatthedangerouspoint.Determinationofthedangerpoint:thepointonthedangeroussectionfarthestfromtheneutralaxis.

aFzy(b)2D1DNote:(1)Thelocationofthedangerpointiseasytodetermineforacross-sectionwithangleslikearectangle.(2)Forirregularsections,thepositionoftheneutralaxisshouldbedeterminedfirst,andthenatangentlineparalleltotheneutralaxisshouldbemadeontheperimeterofthesection,andthetangentpointisthedangerpoint.

aFzy(b)2D1DIfthecoordinatesofthedangerpointsare(y1,z1)and(y2,z2),andthetensileandcompressivestrengthsofthematerialareequal,thestrengthconditioncanbeexpressedas

(12-3)Forsectionssuchasrectangles,thestrengthconditioncanbesimplyexpressedas

(12-4)aFzy(b)2D1DNote:(1)Whenthetensileandcompressivestrengthofthematerialaredifferent,themaximumtensilestressandmaximumcompressivestressshouldbecalibratedrespectively.(2)Whenselectingsections,sinceWy,Wzintheintensityconditionsareunknown,theintensityconditionscannotbeusedtodeterminethevaluesofWy,Wzatthesametime.SoweneedtosetavalueofWy/Wz

accordingtoexperienceandthentosolvebytrialcalculation.3.DeflectionofskewbendingThedeflectionofabeaminskewbendingcanalsobecalculatedusingthemethodofsuperposition.FirstlythedeflectionfycausedbyFyandthedeflectionfz

causedbyFzarecalculatedaccordingtotheofplanebending.Andthenthemagnitudeanddirectionofthetotaldeflectionfcanbederivedbyvectorsynthesis.Nowwetakearectangularsectionbeamasanexampletoillustratethemethodoffindingthedeflectionofskewbending.Example

Findthedeflectionofthefreeendofthecantileverbeamshowninthefigure.Byreferringtothetable,wecanget

thetotaldeflectionofthefreeendis

Lettheangleofthetotaldeflectiontothez-axisbe,then

ommyyFzjxzfyyfz

fz12.3CombinedaxialloadandbendingThebarwillbedeformedinacombinationoftension(compression)andbendingundertwotypesofloading:

eccentricaxialloads;

combinedaxialandtransverseloads.FNF1.StrengthchecksTheinternalforcesMy,Mz,andNinthecrosssectionoftherodcorrespondtothepositivestresses.(1)accordingtoMy,MzandN,determinethelocationofthedangeroussectionofthebar;(2)thenbasedontheactualdirectionofMy,MzandN,thelocationofthedangerouspointinthedangeroussectionisdetermined;(3)bysuperimposingthestressescorrespondingtoeachinternalforcecomponentatthedangerpoint,thestressvalueatthedangerpointisobtained.Forrectangularsectionrods,wehavewherethesignisdeterminedbywhethertheactualstressatthedangerpointisintensionorcompression.thedangerouspointonthememberisinauniaxialstressstate,anditsstrengthconditionis

Example

TheshortcolumnshownissubjectedtoloadsFandH.TrytofindtheinternalforcesatthecornerpointsA,B,CandDonthefixedendsection.SolutionInternalforcesinfixedendsection(2)

Geometricparametersofcross-sectionH=5kNF=25kNAyzBCD150100255075(3)CalculatestressesH=5kNF=25kNAyzBCD150100255075AyzBCD150100255075H=5kNF=25kN2.CoreofSectionFigure(a)showsashortcolumnsubjecttoeccentriccompression.Asshowninfigure(b),simplifyFtowardstheaxis:yxzFOpyPzA(a)(b)zxOyzMyM(b)zxOyzMyMInthecrosssectionshown,atpointB(y,z),thestresscomponentscorrespondingtothethreedeformationsareWherethenegativesignindicatesthatthestressiscompressivestress.ByzyzpBythemethodofsuperpositionandtakingintoaccounttherelationshipbetweenIz=Aiz2

andIy=Aiy2,thenormalstressatpointBis

Ifwesee(y0,z0)asthecoordinatesofanypointontheneutralaxis,sincethestressontheneutralaxisisequaltozero,theequationoftheneutralaxiscanbeobtainedasTheneutralaxisineccentriccompressionisastraightlinethatdoesnotpassthroughthesection'scentroid

let

theinterceptsoftheneutralaxisontheyaxisandzaxiscanbeobtainedasByzyzNeutralaxisayazNote:(1)ayandyP,azandzPareofoppositesign.SotheneutralaxisandtheactionpointAoftheexternalforceFareoneachsideofthesectioncentroid.

(2)iftheactionpointofthepressureFgraduallyapproachesthecentroid,theinterceptwillgraduallyincrease.TheneutralaxiswillgraduallymoveawayfromthecentroidofthesectionyxzFopypzA(a)Thereisaareaaroundthecentroid,Whenthepressureisappliedwithinthisarea,theneutralaxiswillnotcrossthecross-section,andtherewillbenotensilestressesinthecross-section.Thisareaiscalledthecoreofsection.yz1ya1234515321za43Determinetheboundaryofthecoreofanarbitrarysection.Theline①canberegardedastheneutralaxis.Letitsinterceptsontheprincipalcentroidalinertiaaxesyandzbeay1,az1.Thepoint1ofexternalforcecorrespondingtothisneutralaxiscanbecalculatedasfollows(*)yz1ya1234515321za43Similarly,otherlines②③...tangenttotheperimeterofthesectioncanberegardedasneutralaxes.Thecoordinatesofcorrespondingpoints2,3...ontheboundaryofthecoreofsectioncanbeobtainedbytheabovemethodinturn.Connectthesepointstoobtainaclosedcurve,whichistheboundaryofthecoreofsection.yz1ya1234515321za4312.4CombinedbendingandtorsionMostofthecommonshaftsinengineeringaresubjectedtobothtorsionalandbendingdeformation,whichiscalledthecombineddeformationofbendingandtorsion.F2zyxF11.Deformationofcircularshaftssubjectedtobendingandtorsion(1)Strengthconditionsdrawthebendingmoment(My

andMz)diagramsandtorque(Mn)diagram.findthetotalbendingmoment

fromthesyntheticdiagramofbendingmomentandthetorque,thepositionofthedangeroussectionofthecircularshaftcanbedetermined.zy1D2DozMyMwM(a)Action

planeThemaximumtorsionalshearstresscorrespondingtothetorqueMninthedangeroussectionoccursattheedgeofthecrosssectionwiththevalue (a)ThenormalstressinbendingcorrespondingtothesyntheticbendingmomentMWismaximumatpointsD1andD2,anditsvalueis(b)1D2Dontntwsws(b)wsws1Dntnt1D(c)wswszy1D2DozMyMwMwM(a)Action

planeThedistributionofshearstressesandnormalstressesarealongthediameterD1D2ofthesectionshowninFigure(b).BothD1

andD2aredangerouspoints.AnelementiscutatpointD1,ThestressesineachsectionoftheelementareshowninFigure(c).zy1D2DozMyMwMwM(a)Action

plane1D2Dontntwsws(b)wsws1Dntnt1D(c)wswsThedangerpointisinaplanestressstate,sostrengthconditionsshouldbeestablishedaccordingtotheoriesofstrength.TheprincipalstressatpointD1is

Accordingtothethirdtheoryofstrength,thestrengthconditionisAftersubstitutingtheprincipalstress,weget

wswswsws1Dntnt1D(c)Accordingtothefourththeoryofstrength,thestrengthconditionisSimilarly,aftersubstitutingtheprincipalstress,wecanget

(2)Strengthconditionsexpressedintheformof“calculatedbendingmoment”

(12-18)Forcircularsections,thereisWn=2W.Thealternativeformulationofthestrengthconditioncanbeobtained.thethirdtheoryofstrength:thefourththeoryofstrength:

(12-19)(12-20)(12-21)

、,

arecalledthe"calculatedbendingmoments"correspondingtothethirdandfourthstrengththeories,respectively.Obviously,afterintroducingtheconceptof"calculatedbendingmoment",Wejustneedtocalculatethevalueofthebendingmomentandtorqueatthedangersection.Andthenthestrengthcheckcanbecarriedoutdirectly.wswswsws1Dntnt1DEquations(12-20)and(12-21)applyonlytocombineddeformationsofbendingandtorsionofcircularorhollowcircularsection.Equations(12-18)and(12-19)aremorewidelyapplicable,Itisapplicableaslongasthedangerouspointisintheplanestressstateshown.(3)CombinedbendingandtorsionaldeformationofacircularshaftwithaxialforcesPropulsionshaftofshipForthestrengthcalculationofthistypeofrod,theformula(12-15)or(12-16)isstillavailable,butσwshouldbereplacedbythesumofthenormalstressinaxialcompression(tension)andthenormalbendingstress.However,fortheCombinedbendingandtorsionaldeformationofacircularshaftwithaxialforces.Theformula(12-15)or(12-16)isunavailable.TeMAB1F2FeMTwswsnt1DExample

AsteelcircularshaftisfittedwithtapewheelsAandB,asshowninFigure(a).BothwheelshavethesamediameterD=1mandweightF=5kN.ThetensioninthetapeonwheelAishorizontalandthetensioninthetapeonwheelBisintheplumbdirection.Theallowablestressforthecircularshaftis[σ]=80Mpa.Trytofindtherequireddiameteroftheshaftaccordingtothethirdtheoryofstrength.

zyxABCD5kN2kN2kN300500500(a)5kNsolution:Simplifytheexternalforcestowardtheaxis.Makethetorquediagram(Mn)andthebendingmomentdiagrams(MyMz).ThesyntheticbendingmomentsofsectionsCandBarezyxABCD2kN2kN3005005005kN7kN1.5kNm12kNnMxxzMyxzyM5kN5kN1.5kNm1.5kNm2.1kNm2.25kNm1.5kNmSyntheticbendingmomentdiagramMwisshowninFigure.ItcanbeprovedthatthecurveofdiagramMwisconcave.Obviously,sectionCisadangeroussection.(3)Accordingtothethirdtheoryofstrength:Bysubstitutingthedata,thereareTherequireddiameterisABCD2kN5kNxwM2.58kNm2.48kNm2kN5kNExample

Figure(a)showsapropulsionshaftofacargoship.ThepowerofthemainengineisknownasN=7277kW,speedn=119r/min,effectivepropulsiveforceT=767kN,theweightofthepropellerbladesF1=180kN,thetotalweightoftheshaftoutreachF2=45kN,diameteroftheshaftd=51.5cm.Andthereisa1=1.9m,a2=1.2m.Thematerialishighqualitycarbonsteelwithayieldstressofσs=250MPa,allowablefactorofsafety[n]=4.CheckthestrengthofsectionAofthepropulsionshaftaccordingtothefourththeoryofstrength.TMAB1F2F2a1aMT(a)d(2)InternalforcesinsectionA

FN=T=767kNyzMnMaFNAsectionTeMAB1F2F2a1aeMT(a)dsolution(1)Torsionalcouplemoment(3)stressesatthepointofdangerNormalstressesduetobendingmomentsandaxialforcesareshowninFigure.Thecompressivestressisgreatestatpointaofthelowersectionedge,withavalueofThemaximumtorsionalshearstressoccursattheedgeofthecircularsectionandthevalueofpointaisBythefourththeoryofStrength,wecanobtainWsNsspointzMnMyaFNAsection(4)CalculatethefactorofsafetyThefactorofsafetyofashaftrepresentsthesafetyreserveoftheshaftinoperationandisequaltothebreakingstressdividedbytheworkingstress.

Thereforetheshaftissafe.PleaseconsiderthefollowingquestionIfthethirdtheoryofstrengthisadopted,canthestre

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论