




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
StaticsStaticsofdeformablebodyChapter9
GeometricPropertiesofCrossSections9.1Staticmomentofareaandcentroid9.2Momentofinertia,productofinertiaandradiusofgyration9.3Parallelaxistheorem9.4TransformationequationandprincipalmomentofinertiaContents
9.1Staticmomentofareaandcentroid1.Staticmoment
thestaticmomentforthezandyaxesrespectively·cdAyyy0zzzNote:Staticmomentsareforcertainaxesandwillvaryfordifferentaxesforthesamesection.Thevalueofthestaticmomentcanbepositive,negative,orzero.Itsdimensionis[length]3.Thestaticmomentofacombinedsectiontoanaxisisequaltothealgebraicsumofthestaticmomentsofeachsimplefigureinthecombinedsectiontothataxis. Ifthecrosssectionisahomogeneousandequal-thicknesssheet,itscentreofgravityisthecentroid:·cdAyyy0zzz
Whenthepositionofthecentroidisknown,thestaticmomentcanbeobtainedasfollows:2.RelationshipbetweenstaticmomentofareaandcentroidThecoordinateaxispassingthroughthecentroidwithinaplaneiscalledthecentroidalaxis.·cdAyyy0zzzIfthestaticmomentofasectiontoanaxisiszero,thisaxismustbethecentroidalaxisofthecenterofthesection.Conversely,thestaticmomentofthecross-sectionalpatterntoitscentroidalaxisisequaltozero.SolutionSincethezaxisistheaxisofsymmetryandmustpassthroughthecentroidofthesection,wehave
zdAqRy0dzz0y=(2)ForthepurposeofcalculatingSytakeanarrowstripparalleltotheyaxisasthemicroareaExampleTrytofindthestaticmomentsSyandSzofthesemicircularsectionshowninfollowingpictureandthecoordinatesofcentroid.zdAqRy0dzzExampleTrytofindthestaticmomentsSyandSzofthesemicircularsectionshowninfollowingpictureandthecoordinatesofcentroid.3.StaticmomentandcentroidofcompositeareaAsectionconsistingofsimplepictures(e.g.circles,rectangles,triangles,etc.)iscalledacompositesection.Thestaticmomentofacompositesectionforagivenaxisisequaltothealgebraicsumofthestaticmomentsofthesimplepictures,i.e.substituting
intoWecanobtainfollowingequationforcalculatingthecoordinatesofthecentroidofthecompositesectionSolutioncentroidofthecrosssection:
ExampleCalculatethecentroidalaxisycandzcforaT-section.100cIIIcz20ycyz14020
9.2Momentofinertia,productofinertiaandradiusofgyration1.Momentofinertia
Itisdefinedasthemomentofinertiaorsecondmomentforthesectionwithrespecttothezandyaxes,respectively.
zdAyy0zNote:Themomentofinertiaofthesamesectionvariesfordifferentaxes,butitisalwayspositive.Thedimensionofthemomentofinertiais[length]4.Themomentofinertiaofacompositesectionforanaxisshouldbeequaltothesumofthemomentsofinertiaofeachconstituentsectionforthataxis2.ProductofinertiaItisdefinedastheproductofinertiaforthesectionwithrespecttothez,yaxes.Note:Productofinertiavaryfordifferentaxesforthesamesection.Thevalueoftheproductofinertiacanbepositive,negative,orzero.Itsdimensionis[length]4.zdAyy0z3.Radiusofgyration
or
whereiy,izisdefinedastheradiusofgyrationofthesectionwithrespecttothezandyaxis,respectively,withthedimensionoflength.4.PolarmomentsofinertiaDefinitionItisthepolarmomentofinertia
ofthesectionwithrespecttotheoriginofthecoordinates.because
Soweget
zdAyyOzconclusion:(1)Thesamesectionhasdifferentmomentsofinertiaandproductsofinertiafordifferentcoordinateaxes.(2)ThesumofthemomentsofinertiaIyandIzisconstantlyequaltothemomentofinertiaIpofthesectionattheintersectionofthesetwoaxes.①②③conclusion:(3)Iy,IzandIpareconstantlypositive,whiletheproductofinertiaIyzmayhaveanegativeorzerovalue.Theyallhavethedimensionof[length]4.(4)Theproductofinertiawithrespecttotwoorthogonalaxesisequaltozeroiftheaxesistheaxisofsymmetryofthesection.(5)Themomentofinertiaofacompositesectionforanaxisshouldbeequaltothesumofthemomentsofinertiaofeachconstituentsectionforthesameaxis.①②③ExampleCalculatethemomentofinertiaofarectangularsectionshowninpicturewithrespecttotheyandzaxesofsymmetry.czbyhdzzsolution
Takeanarrowrectangleparalleltotheyaxistobethemicro-areadA.Then
dA=bdzThemomentofinertiaofthesectionwithrespecttotheyaxisis
AsimilarmomentofinertiatothezaxisisczbyhdzzExampleCalculatethemomentofinertiaofarectangularsectionshowninpicturewithrespecttotheyandzaxesofsymmetry.DczyExampleCalculatethemomentofinertiaofacircularsectionwithrespecttoitscentroidalaxis.solutionDczyzycDdExampleCalculatethemomentofinertiaofahollowcircularsectionwithrespecttoitscentroidalaxis.solutionThemomentofinertiaofacompositesectionforanaxisshouldbeequaltothesumofthemomentsofinertiaofeachconstituentsectionforthesameaxis.soForahollowcircularsection,we
can
get9.3Parallelaxistheorem
ycandzcareorthogonalaxespassingthroughthecentroidofthesection,andareparalleltotheyandzaxesrespectively.zcdAy0cyczybcyzczaSimilarly
Theaboveequationisknownastheparallelaxistheorem.
zcdAy0cyczybcyzczaThemomentofinertiaofagraphwithrespecttoanyaxisisequaltothemomentofinertiaofthegraphwithrespecttotheaxisparalleltothataxisplustheproductoftheareaofthegraphandthesquareofthedistancebetweenthetwoparallelaxes;Theproductoftheinertiaofagraphwithrespecttoanypairofright-angledaxesisequaltotheproductoftheinertiaofthegraphwithrespecttothecentroidalaxesparalleltothataxisplustheproductoftheareaofthegraphandthespacingofthetwopairsofparallelaxes;Themomentofinertiaofthefigureisminimumforcentroid,andtheproductofinertiaobtainedbyparallelaxistheoremmayincreaseordecrease.Solution
Positionofthesection'scentroidTocalculatethemomentsofinertiaIycandIzc,firstlycalculatethemomentsofinertiaofthetworectanglesIandIIfortheycandzcaxesrespectivelyExampleCalculatethemomentofinertiaoftheT-shapedsectionshowninthepicturefortheycandzccentroidalaxes.100cIIIcz20ycyz14020100cIIIcz20ycyz14020Sothemomentofinertiaofthewholesectionwithrespecttotheycandzcaxesis100cIIIcz20ycyz14020ExampleCalculatethemomentofinertiaoftheT-shapedsectionshowninthepicturefortheycandzccentroidalaxes.9.4Transformationequationandprincipalmomentofinertia1.TransformationequationFortransformationofcoordinatesbytheaxisofrotation,wehavethen
0aaazzdAy1yz1zyy1because
Wecanget
Thesearetransformationequations.2.PrincipalaxisofinertiaandprincipalmomentofinertiaIftheproductofinertiatoapairoforthogonalaxesiszero,thispairofaxesiscalledtheprincipalaxis.Themomentofinertiaaboutaprincipalaxisiscalledtheprincipalmomentofinertia.Whentheprincipalaxisisthecentroidalaxis,itiscalledthecentroidalprincipalaxis.Themomentofinertiawithrespecttothecentroidalprincipalaxisisreferredtoasthecentroidalprincipalmomentofinertia.Ifthesectionhasanaxisofsymmetry,thisaxisisoneoftheprincipalaxesofthecentroid.Theotherprincipalaxisofthecentroidistheaxispassingthroughthesectioncentroidandperpendiculartothisaxisofsymmetry.Forthecrosssectionwithoutaxisofsymmetry,thepositionoftheprincipalaxisisdeterminedbycalculation.Substitutingα=α0
intoWehaveLet,wecangetBysubstitutingaboveequationintothefollowingtwoequationsweobtainIy0andIz0.Substitutingsin2α0
andcos2α0
intoaboveequationandfinallyobtainingthegeneralformulafortheprincipalmomentofinertiais
Iftheoriginofthezoycoordinatesystemisthecenterofthesection,theprincipalmomentofinertiacalculatedbytheaboveequationisalsothecentroidalprincipalmomentofinertiaofthesectionFurthermore,sinceIy1andIy2arecontinuousfunctionsofα,theirextremescanbefoundbyderivingtheirderivatives.wegetand
Comparisonshowsthat
Description:
Theprincipalaxisp
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 数据管理办法作用
- 2024年新疆尼勒克县卫生高级职称(卫生管理)考试题含答案
- 村民停车管理办法
- 改善食堂管理办法
- 异地支票管理办法
- 招生津贴管理办法
- 弥勒温泉管理办法
- 2024年陕西省宝鸡县急诊医学(副高)考试题含答案
- 戏曲剧团管理办法
- 2024年山东省利津县急诊医学(副高)考试题含答案
- 《问题解决策略:直观分析》教学设计
- 驿站快递合同协议书
- 华润守正评标专家考试试题及答案
- 食品公司销售管理制度
- 牙周炎培训课件
- DB51-T 3171-2024 四川省体育服务综合体等级划分
- 大学生职业发展与就业指导-09成功转换角色与适应职场环境
- 活检钳取病理应用
- 丝绸之路的开拓者张骞人物介绍
- 餐饮店铺装修拆除方案
- 夜市街规划设计方案
评论
0/150
提交评论