版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届北京市昌平临川育人学校数学九上期末检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.下列图形中,可以看作是中心对称图形的是()A. B. C. D.2.若锐角α满足cosα<且tanα<,则α的范围是()A.30°<α<45° B.45°<α<60°C.60°<α<90° D.30°<α<60°3.下列图形中,不是轴对称图形的是()A. B. C. D.4.如图,△ABC中,∠C=90°,∠B=30°,AC=,D、E分别在边AC、BC上,CD=1,DE∥AB,将△CDE绕点C旋转,旋转后点D、E对应的点分别为D′、E′,当点E′落在线段AD′上时,连接BE′,此时BE′的长为()A.2 B.3 C.2 D.35.如图,在中,平分于.如果,那么等于()A. B. C. D.6.二次函数y=x1+bx﹣t的对称轴为x=1.若关于x的一元二次方程x1+bx﹣t=0在﹣1<x<3的范围内有实数解,则t的取值范围是()A.﹣4≤t<5 B.﹣4≤t<﹣3 C.t≥﹣4 D.﹣3<t<57.如图,小明在打乒乓球时,为使球恰好能过网(设网高AB=15cm),且落在对方区域桌子底线C处,已知小明在自己桌子底线上方击球,则他击球点距离桌面的高度DE为()A.15cm B.20cm C.25cm D.30cm8.如图,要测量小河两岸相对的两点P,A的距离,可以在小河边取PA的垂线PB上的一点C,测得PC=100米,∠PCA=35°,则小河宽PA等于()A.100sin35°米 B.100sin55°米 C.100tan35°米 D.100tan55°米9.有9名同学参加歌咏比赛,他们的预赛成绩各不相同,现取其中前4名参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这9名同学成绩的()A.平均数 B.方差 C.中位数 D.极差10.下列手机手势解锁图案中,是中心对称图形的是(
)A. B. C. D.二、填空题(每小题3分,共24分)11.圆的半径为1,AB是圆中的一条弦,AB=,则弦AB所对的圆周角的度数为____.12.已知点、在二次函数的图像上,则___.(填“”、“”、“”)13.已知函数是反比例函数,则的值为__________.14.如图,在△ABC中,点A1,B1,C1分别是BC,AC,AB的中点,A2,B2,C2分别是B1C1,A1C1,A1B1的中点……依此类推,若△ABC的面积为1,则△AnBnCn的面积为__________.15.“国庆节”和“中秋节”双节期间,某微信群规定,群内的每个人都要发一个红包,并保证群内其他人都能抢到且自己不能抢自己发的红包,若此次抢红包活动,群内所有人共收到156个红包,则该群一共有_____人.16.一棵参天大树,树干周长为3米,地上有一根常春藤恰好绕了它5圈,藤尖离地面20米高,那么这根常春藤至少有____米.17.将抛物线向左平移2个单位得到新的抛物线,则新抛物线的解析式是______.18.如图,起重机臂长,露在水面上的钢缆长,起重机司机想看看被打捞的沉船情况,在竖直平面内把起重机臂逆时针转动到的位置,此时露在水面上的钢缆的长度是___________.三、解答题(共66分)19.(10分)解方程:(1)x2﹣1x+5=0(配方法)(2)(x+1)2=1x+1.20.(6分)解方程:2x2﹣5x﹣7=1.21.(6分)某商场试销一种成本为每件60元的服装,经试销发现,每天的销售量(件)与销售单价(元)的关系符合次函数.(1)如果要实现每天2000元的销售利润,该如何确定销售单价?(2)销售单价为多少元时,才能使每天的利润最大?其每天的最大利润是多少?22.(8分)如图,⊙O的直径为AB,点C在⊙O上,点D,E分别在AB,AC的延长线上,DE⊥AE,垂足为E,∠A=∠CDE.(1)求证:CD是⊙O的切线;(2)若AB=4,BD=3,求CD的长.23.(8分)在平面直角坐标系中(如图),已知二次函数(其中a、b、c是常数,且a≠0)的图像经过点A(0,-3)、B(1,0)、C(3,0),联结AB、AC.(1)求这个二次函数的解析式;(2)点D是线段AC上的一点,联结BD,如果,求tan∠DBC的值;(3)如果点E在该二次函数图像的对称轴上,当AC平分∠BAE时,求点E的坐标.24.(8分)如图,在Rt△ABC中,∠C=90°,AB=10cm,BC=6cm.动点P,Q从点A同时出发,点P沿AB向终点B运动;点Q沿AC→CB向终点B运动,速度都是1cm/s.当一个点到达终点时,另一个点同时停止运动.设点P运动的时间为t(s),在运动过程中,点P,点Q经过的路线与线段PQ围成的图形面积为S(cm2).(1)AC=_________cm;(2)当点P到达终点时,BQ=_______cm;(3)①当t=5时,s=_________;②当t=9时,s=_________;(4)求S与t之间的函数解析式.25.(10分)在2020新年贺词中讲到“垃圾分类引领新时尚”为积极响应号召,普及垃圾分类知识,某社区工作人员在一个小区随机抽取了若干名居民,开展垃圾分类知识有奖问答,并用得到的数据绘制了如图所示条形统计图.请根据图中信息,解答下列问题:(1)本次调查一共抽取了______名居民(2)求本次调查获取的样本数据的平均数______:中位数______;(3)杜区决定对该小区2000名居民开展这项有奖问答活动,得10分者设为一等奖.根据调查结果,估计社区工作人员需准备多少份一等奖奖品?26.(10分)如图,C城市在A城市正东方向,现计划在A、C两城市间修建一条高速铁路(即线段AC),经测量,森林保护区的中心P在城市A的北偏东60°方向上,在线段AC上距A城市150km的B处测得P在北偏东30°方向上,已知森林保护区是以点P为圆心,120km为半径的圆形区域,请问计划修建的这条高速铁路是否穿越保护区,为什么?(参考数据:≈1.732)
参考答案一、选择题(每小题3分,共30分)1、B【分析】把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,根据中心对称图形的概念求解.【详解】A、不是中心对称图形,故本选项不合题意;
B、是中心对称图形,故本选项符合题意;
C、不中心对称图形,故本选项不合题意;
D、不中心对称图形,故本选项不合题意.
故选:B.【点睛】本题主要考查了中心对称图形的概念:关键是找到相关图形的对称中心,旋转180度后与原图重合.2、B【详解】∵α是锐角,∴cosα>0,∵cosα<,∴0<cosα<,又∵cos90°=0,cos45°=,∴45°<α<90°;∵α是锐角,∴tanα>0,∵tanα<,∴0<tanα<,又∵tan0°=0,tan60°=,0<α<60°;故45°<α<60°.故选B.【点睛】本题主要考查了余弦函数、正切函数的增减性与特殊角的余弦函数、正切函数值,熟记特殊角的三角函数值和了解锐角三角函数的增减性是解题的关键3、A【分析】根据轴对称图形概念进行解答即可.【详解】解:A、不是轴对称图形,符合题意;B、是轴对称图形,不合题意;C、是轴对称图形,不合题意;D、是轴对称图形,不合题意;故选:A.【点睛】本题考查了轴对称图形的概念,判断轴对称图形的关键是寻找对称轴;轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.4、B【分析】如图,作CH⊥BE′于H,设AC交BE′于O.首先证明∠CE′B=∠D′=60°,解直角三角形求出HE′,BH即可解决问题.【详解】解:如图,作CH⊥BE′于H,设AC交BE′于O.∵∠ACB=90°,∠ABC=30°,∴∠CAB=60°,∵DE∥AB,∴=,∠CDE=∠CAB=∠D′=60°∴=,∵∠ACB=∠D′CE′,∴∠ACD′=∠BCE′,∴△ACD′∽△BCE′,∴∠D′=∠CE′B=∠CAB,在Rt△ACB中,∵∠ACB=90°,AC=,∠ABC=30°,∴AB=2AC=2,BC=AC=,∵DE∥AB,∴=,∴=,∴CE=,∵∠CHE′=90°,∠CE′H=∠CAB=60°,CE′=CE=∴E′H=CE′=,CH=HE′=,∴BH===∴BE′=HE′+BH=3,故选:B.【点睛】本题考查了相似三角形的综合应用题,涉及了旋转的性质、平行线分线段成比例、相似三角形的性质与判定等知识点,解题的关键是灵活运用上述知识点进行推理求导.5、D【分析】先根据直角三角形的性质和角平分线的性质可得,再根据等边对等角可得,最后在中,利用直角三角形的性质即可得.【详解】平分则在中,故选:D.【点睛】本题考查了等腰三角形的性质、角平分线的性质、直角三角形的性质:(1)两锐角互余;(2)所对的直角边等于斜边的一半;根据等腰三角形的性质得出是解题关键.6、A【解析】根据抛物线对称轴公式可先求出b的值,一元二次方程x1+bx﹣t=0在﹣1<x<3的范围内有实数解相当于y=x1﹣bx与直线y=t的在﹣1<x<3的范围内有交点,即直线y=t应介于过y=x1﹣bx在﹣1<x<3的范围内的最大值与最小值的直线之间,由此可确定t的取值范围.【详解】解:∵抛物线的对称轴x==1,∴b=﹣4,则方程x1+bx﹣t=0,即x1﹣4x﹣t=0的解相当于y=x1﹣4x与直线y=t的交点的横坐标,∵方程x1+bx﹣t=0在﹣1<x<3的范围内有实数解,∴当x=﹣1时,y=1+4=5,当x=3时,y=9﹣11=﹣3,又∵y=x1﹣4x=(x﹣1)1﹣4,∴当﹣4≤t<5时,在﹣1<x<3的范围内有解.∴t的取值范围是﹣4≤t<5,故选:A.【点睛】本题主要考查了二次函数与一元二次方程之间的关系,一元二次方程的解相当于与直线y=k的交点的横坐标,解的数量就是交点的个数,熟练将二者关系进行转化是解题的关键.7、D【分析】证明△CAB∽△CDE,然后利用相似比得到DE的长.【详解】∵AB∥DE,∴△CAB∽△CDE,∴,而BC=BE,∴DE=2AB=2×15=30(cm).故选:D.【点睛】本题考查了相似三角形的应用,用相似三角形对应边的比相等的性质求物体的高度.8、C【分析】根据正切函数可求小河宽PA的长度.【详解】∵PA⊥PB,PC=100米,∠PCA=35°,∴小河宽PA=PCtan∠PCA=100tan35°米.故选C.【点睛】考查了解直角三角形的应用,解直角三角形的一般过程是:①将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题).②根据题目已知特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案.9、C【解析】9人成绩的中位数是第5名的成绩.参赛选手要想知道自己是否能进入前4名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【详解】由于总共有9个人,且他们的分数互不相同,第5的成绩是中位数,要判断是否进入前5名,故应知道中位数的多少.故选:C.【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、极差、方差的意义,掌握相关知识点是解答此题的关键.10、B【分析】根据中心对称图形的概念判断即可.【详解】A.不是中心对称图形;B.是中心对称图形;C.不是中心对称图形;D.不是中心对称图形.故选B.【点睛】本题考查了中心对称图的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.二、填空题(每小题3分,共24分)11、60°或120°【解析】试题解析:如图,作OH⊥AB于H,连接OA、OB,∠C和∠C′为AB所对的圆周角,∵OH⊥AB,∴AH=BH=AB=,在Rt△OAH中,∵cos∠OAH=,∴∠OAH=30°,∴∠AOB=180°-60°=120°,∴∠C=∠AOB=60°,∴∠C′=180°-∠C=120°,即弦AB所对的圆周角为60°或120°.点睛:圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.12、【分析】把两点的坐标分别代入二次函数解析式求出纵坐标,再比较大小即可得解.【详解】时,,
时,,
∵>0,
∴;
故答案为:.【点睛】本题考查了二次函数的性质及二次函数图象上点的坐标特征,用求差法比较大小是常用的方法.13、1【分析】根据反比例函数的定义列出方程,然后解一元二次方程即可.【详解】解:根据题意得,n2﹣2=﹣1且n+1≠0,整理得,n2=1且n+1≠0,解得n=1.故答案为:1.【点睛】本题考查了反比例函数的定义,反比例函数解析式的一般形式(k≠0),也可转化为y=kx﹣1(k≠0)的形式,特别注意不要忽略k≠0这个条件.14、【分析】由于、、分别是的边、、的中点,就可以得出△,且相似比为,就可求出△,同样地方法得出△依此类推所以就可以求出的值.【详解】解:、、分别是的边、、的中点,、、是的中位线,△,且相似比为,,且,、、分别是△的边、、的中点,△的△且相似比为,,依此类推,.故答案为:.【点睛】本题考查了三角形中位线定理的运用,相似三角形的判定与性质的运用,解题的关键是有相似三角形的性质:面积比等于相似比的平方.15、1【分析】设该群的人数是x人,则每个人要发其他(x﹣1)张红包,则共有x(x﹣1)张红包,等于156个,由此可列方程.【详解】设该群共有x人,依题意有:x(x﹣1)=156解得:x=﹣12(舍去)或x=1.故答案为1.【点睛】本题考查的是一元二次方程的应用,正确找准等量关系列方程即可,比较简单.16、25【分析】如下图,先分析常春藤一圈展开图,求得常春藤一圈的长度后,再求总长度.【详解】如下图,是常春藤恰好绕树的图形∵绕5圈,藤尖离地面20米∴常春藤每绕1圈,对应的高度为20÷5=4米我们将绕树干1圈的图形展开如下,其中,AB表示树干一圈的长度,AC表示常春藤绕树干1圈的高度,BC表示常春藤绕树干一圈的长度∴在Rt△ABC中,BC=5∴常春藤总长度为:5×5=25米故答案为:25【点睛】本题考查侧面展开图的运算,解题关键是将题干中的树干展开为如上图△ABC的形式.17、y=5(x+2)2【分析】根据二次函数平移的性质求解即可.【详解】抛物线的平移问题,实质上是顶点的平移,原抛物线y=顶点坐标为(O,O),向左平移2个单位,顶点坐标为(-2,0),根据抛物线的顶点式可求平移后抛物线的解析式为y=5(x+2)2,故答案为y=5(x+2)2.【点睛】本题主要考查二次函数平移的性质,有口诀“左加右减,上加下减”,注意灵活运用.18、30m【解析】首先在Rt△ABC中,利用正弦值可推出∠CAB=45°,然后由转动角度可得出∠C'AB'=60°,在Rt△C'AB'中利用60°的正弦即可求出B'C'.【详解】再Rt△ABC中,∵∴∠CAB=45°起重机臂逆时针转动到的位置后,∠C'AB'=∠CAB+15°=60°在Rt△C'AB'中,B'C'=m故答案为:30m.【点睛】本题考查了解直角三角形,熟练掌握直角三角形中的边角关系是解题的关键.三、解答题(共66分)19、(2)x2=3,x2=2;(2)x2=﹣2,x2=3【分析】(2)先变形为x2-2x=-3,再把方程两边都加上9得
x2-2x+9=-3+9,则
(x-3)2=4,然后用直接开平方法解方程即可.
(2)先移项,然后提取公因式(x+2)进行因式分解;【详解】解:(2)x2﹣2x=﹣3,x2﹣2x+32=﹣3+32,(x﹣3)2=4,x=3±2,所以x2=3,x2=2.(2)(x+2)2﹣2(x+2)=0,(x+2)(x+2﹣2)=0,x+2=0或x+2﹣2=0,所以x2=﹣2,x2=3.【点睛】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.20、x2=,x2=﹣2.【分析】把方程左边进行因式分解(2x﹣7)(x+2)=2,方程就可化为两个一元一次方程2x﹣7=2或x+2=2,解两个一元一次方程即可.【详解】解:2x2﹣5x﹣7=2,∴(2x﹣7)(x+2)=2,∴2x﹣7=2或x+2=2,∴x2=,x2=﹣2.【点睛】本题主要考查了解一元二次方程,正确使用因式分解法解一元二次方程是解答本题的关键.21、(1)100元;(2)当销售单价定为105元时,可获得最大利润,最大利润是2025元.【分析】(1)根据题意列出方程,解一元二次方程即可;(2)先根据利润=每件的利润×销售量表示出利润,然后利用二次函数的性质求最大值即可.【详解】(1)依题意得:,解得或(不合题意).(2)若每天的利润为元,则,∴当销售单价定为105元时,可获得最大利润,最大利润是2025元.【点睛】本题主要考查二次函数与一元二次方程的应用,掌握解一元二次方程的方法和二次函数的性质是解题的关键.22、(1)见解析;(2)【分析】(1)连接,根据三角形的内角和得到,根据等腰三角形的性质得到,得到,于是得到结论;(2)根据已知条件得到,根据勾股定理即可得到结论.【详解】(1)证明:连接,∵,∴,∴,∵,∴,∵,∴,∴,∴,∴∵点在上,∴是的切线(2)解:∵,∴,∴,【点睛】本题主要考查切线的判定以及圆和勾股定理,根据题意准确作出辅助线是求解本题的关键.23、(1);(2);(3)E(2,)【分析】(1)直接利用待定系数法,把A、B、C三点代入解析式,即可得到答案;(2)过点D作DH⊥BC于H,在△ABC中,设AC边上的高为h,利用面积的比得到,然后求出DH和BH,即可得到答案;(3)延长AE至x轴,与x轴交于点F,先证明△OAB∽△OFA,求出点F的坐标,然后求出直线AF的方程,即可求出点E的坐标.【详解】解:(1)将A(0,-3)、B(1,0)、C(3,0)代入得,解得,∴此抛物线的表达式是:.(2)过点D作DH⊥BC于H,在△ABC中,设AC边上的高为h,则,又∵DH//y轴,∴.∵OA=OC=3,则∠ACO=45°,∴△CDH为等腰直角三角形,∴.∴.∴tan∠DBC=.(3)延长AE至x轴,与x轴交于点F,∵OA=OC=3,∴∠OAC=∠OCA=45°,∵∠OAB=∠OAC∠BAC=45°∠BAC,∠OFA=∠OCA∠FAC=45°∠FAC,∵∠BAC=∠FAC,∴∠OAB=∠OFA.∴△OAB∽△OFA,∴.∴OF=9,即F(9,0);设直线AF的解析式为y=kx+b(k≠0),可得,解得,∴直线AF的解析式为:,将x=2代入直线AF的解析式得:,∴E(2,).【点睛】本题考查了相似三角形的判定和性质,二次函数的性质,求二次函数的解析式,等腰直角三角形的判定和性质,求一次函数的解析式,解题的关键是掌握二次函数的图像和性质,以及正确作出辅助线构造相似三角形.24、(1)8;(2)4;(3)①,②22;(4)【分析】(1)根据勾股定理求解即可;(2)先求出点P到达中点所需时间,则可知点Q运动路程,易得CQ长,;(3)①作PD⊥AC于D,可证△APD∽△ABC,利用相似三角形的性质可得PD长,根据面积公式求解即可;②作PE⊥AC于E,可证△PBE∽△ABC,利用相似三角形的性质可得PE长,用可得s的值;(4)当0<t≤8时,作PD⊥AC于D,可证△APD∽△ABC,可用含t的式子表示出PD的长,利用三角形面积公式可得s与t之间的函数解析式;当8<t≤10时,作PE⊥AC于E,可证△PBE∽△ABC,利用相似三角形的性质可用含t的式子表示出PE长,用可得s与t之间的函数解析式.【详解】解:(1)在Rt△ABC中,由勾股定理得(2)设点P运动到终
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 废铀废料的处理与再利用考核试卷
- 文化传承保护和弘扬有价值的专业知识遗产考核试卷
- 内陆养殖的农村地区与农业生产保障考核试卷
- 橡胶制品业财务制度样本
- 家政服务销售采购合同管理要点
- 办公楼内墙装修合同
- 通信运营商招投标质量控制
- 建筑用电梯保养拆除协议
- 远离宗教活动场所班会
- 建筑材料模板施工承包合同
- 【学生基本信息表】样本
- 环境监测仪器设备采购投标方案(技术标)
- 薄壁不锈钢管卡压连接施工工艺
- 班主任技能大赛一等奖治班策略
- 新课标-人教版数学六年级上册第四单元《比》单元教材解读
- XML期末大作业实验报告
- 全国高中青年数学教师优质课大赛一等奖《函数的单调性》课件
- 部编版道德与法治 四年级上册 单元作业设计《为父母分担》
- 积极应对媒体正确舆情引导培训讲义课件
- 第一章-教育及其本质
- 中国女性生理健康白皮书
评论
0/150
提交评论