甘肃省靖远县靖安中学2023-2024学年中考数学最后一模试卷含解析_第1页
甘肃省靖远县靖安中学2023-2024学年中考数学最后一模试卷含解析_第2页
甘肃省靖远县靖安中学2023-2024学年中考数学最后一模试卷含解析_第3页
甘肃省靖远县靖安中学2023-2024学年中考数学最后一模试卷含解析_第4页
甘肃省靖远县靖安中学2023-2024学年中考数学最后一模试卷含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

甘肃省靖远县靖安中学2023-2024学年中考数学最后一模试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1.某市从今年1月1日起调整居民用水价格,每立方米水费上涨.小丽家去年12月份的水费是15元,而今年5月的水费则是10元.已知小丽家今年5月的用水量比去年12月的用水量多5m1.求该市今年居民用水的价格.设去年居民用水价格为x元/m1,根据题意列方程,正确的是()A. B.C. D.2.在“大家跳起来”的乡村学校舞蹈比赛中,某校10名学生参赛成绩统计如图所示.对于这10名学生的参赛成绩,下列说法中错误的是()A.众数是90 B.中位数是90 C.平均数是90 D.极差是153.下列计算结果是x5的为()A.x10÷x2B.x6﹣xC.x2•x3D.(x3)24.2018的相反数是()A. B.2018 C.-2018 D.5.小明和小亮按如图所示的规则玩一次“锤子、剪刀、布”游戏,下列说法中正确的是()A.小明不是胜就是输,所以小明胜的概率为 B.小明胜的概率是,所以输的概率是C.两人出相同手势的概率为 D.小明胜的概率和小亮胜的概率一样6.在△ABC中,∠C=90°,AC=9,sinB=,则AB=(

)A.15

B.12

C.9

D.67.如图,若AB∥CD,则α、β、γ之间的关系为()A.α+β+γ=360° B.α﹣β+γ=180°C.α+β﹣γ=180° D.α+β+γ=180°8.改革开放40年以来,城乡居民生活水平持续快速提升,居民教育、文化和娱乐消费支出持续增长,已经成为居民各项消费支出中仅次于居住、食品烟酒、交通通信后的第四大消费支出,如图为北京市统计局发布的2017年和2018年我市居民人均教育、文化和娱乐消费支出的折线图.说明:在统计学中,同比是指本期统计数据与上一年同期统计数据相比较,例如2018年第二季度与2017年第二季度相比较;环比是指本期统计数据与上期统计数据相比较,例如2018年第二季度与2018年第一季度相比较.根据上述信息,下列结论中错误的是()A.2017年第二季度环比有所提高B.2017年第三季度环比有所提高C.2018年第一季度同比有所提高D.2018年第四季度同比有所提高9.下列运算正确的是()A.(﹣2a)3=﹣6a3 B.﹣3a2•4a3=﹣12a5C.﹣3a(2﹣a)=6a﹣3a2 D.2a3﹣a2=2a10.下列四个函数图象中,当x<0时,函数值y随自变量x的增大而减小的是()A. B. C. D.二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,等边△ABC的边长为1cm,D、E分别是AB、AC边上的点,将△ADE沿直线DE折叠,点A落在点处,且点在△ABC的外部,则阴影部分图形的周长为_____cm.12.不等式的解集是________________13.如图,在直角三角形ABC中,∠ACB=90°,CA=4,点P是半圆弧AC的中点,连接BP,线段即把图形APCB(指半圆和三角形ABC组成的图形)分成两部分,则这两部分面积之差的绝对值是_____.14.如图,正△ABC的边长为2,顶点B、C在半径为的圆上,顶点A在圆内,将正△ABC绕点B逆时针旋转,当点A第一次落在圆上时,则点C运动的路线长为(结果保留π);若A点落在圆上记做第1次旋转,将△ABC绕点A逆时针旋转,当点C第一次落在圆上记做第2次旋转,再绕C将△ABC逆时针旋转,当点B第一次落在圆上,记做第3次旋转……,若此旋转下去,当△ABC完成第2017次旋转时,BC边共回到原来位置次.15.如图,在两个同心圆中,四条直径把大圆分成八等份,若往圆面投掷飞镖,则飞镖落在黑色区域的概率是_______.16.阅读材料:如图,C为线段BD上一动点,分别过点B、D作AB⊥BD,ED⊥BD,连接AC、EC.设CD=x,若AB=4,DE=2,BD=8,则可用含x的代数式表示AC+CE的长为.然后利用几何知识可知:当A、C、E在一条直线上时,x=时,AC+CE的最小值为1.根据以上阅读材料,可构图求出代数式的最小值为_____.三、解答题(共8题,共72分)17.(8分)观察下列等式:①1×5+4=32;②2×6+4=42;③3×7+4=52;…(1)按照上面的规律,写出第⑥个等式:_____;(2)模仿上面的方法,写出下面等式的左边:_____=502;(3)按照上面的规律,写出第n个等式,并证明其成立.18.(8分)小明有两双不同的运动鞋放在一起,上学时间到了,他准备穿鞋上学.他随手拿出一只,恰好是右脚鞋的概率为;他随手拿出两只,请用画树状图或列表法求恰好为一双的概率.19.(8分)图中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△ABC的顶点均在格点上(1)画出将△ABC绕点B按逆时针方向旋转90°后所得到的△A1BC1;(2)画出将△ABC向右平移6个单位后得到的△A2B2C2;(3)在(1)中,求在旋转过程中△ABC扫过的面积.20.(8分)如图,抛物线y=x1﹣1x﹣3与x轴交于A、B两点(点A在点B的左侧),直线l与抛物线交于A,C两点,其中点C的横坐标为1.(1)求A,B两点的坐标及直线AC的函数表达式;(1)P是线段AC上的一个动点(P与A,C不重合),过P点作y轴的平行线交抛物线于点E,求△ACE面积的最大值;(3)若直线PE为抛物线的对称轴,抛物线与y轴交于点D,直线AC与y轴交于点Q,点M为直线PE上一动点,则在x轴上是否存在一点N,使四边形DMNQ的周长最小?若存在,求出这个最小值及点M,N的坐标;若不存在,请说明理由.(4)点H是抛物线上的动点,在x轴上是否存在点F,使A、C、F、H四个点为顶点的四边形是平行四边形?如果存在,请直接写出所有满足条件的F点坐标;如果不存在,请说明理由.21.(8分)如图,在四边形ABCD中,AB=AD,BC=DC,AC、BD相交于点O,点E在AO上,且OE=OC.求证:∠1=∠2;连结BE、DE,判断四边形BCDE的形状,并说明理由.22.(10分)“六一”儿童节前夕,某县教育局准备给留守儿童赠送一批学习用品,先对红星小学的留守儿童人数进行抽样统计,发现各班留守儿童人数分别为6名,7名,8名,10名,12名这五种情形,并绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(1)该校有_____个班级,补全条形统计图;(2)求该校各班留守儿童人数数据的平均数,众数与中位数;(3)若该镇所有小学共有60个教学班,请根据样本数据,估计该镇小学生中,共有多少名留守儿童.23.(12分)某海域有A、B两个港口,B港口在A港口北偏西30°方向上,距A港口60海里,有一艘船从A港口出发,沿东北方向行驶一段距离后,到达位于B港口南偏东75°方向的C处,求:(1)∠C=°;(2)此时刻船与B港口之间的距离CB的长(结果保留根号).24.如图,在平面直角坐标系中,点A和点C分别在x轴和y轴的正半轴上,OA=6,OC=4,以OA,OC为邻边作矩形OABC,动点M,N以每秒1个单位长度的速度分别从点A、C同时出发,其中点M沿AO向终点O运动,点N沿CB向终点B运动,当两个动点运动了t秒时,过点N作NP⊥BC,交OB于点P,连接MP.(1)直接写出点B的坐标为,直线OB的函数表达式为;(2)记△OMP的面积为S,求S与t的函数关系式;并求t为何值时,S有最大值,并求出最大值.

参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解析】解:设去年居民用水价格为x元/cm1,根据题意列方程:,故选A.2、C【解析】

由统计图中提供的数据,根据众数、中位数、平均数、极差的定义分别列出算式,求出答案:【详解】解:∵90出现了5次,出现的次数最多,∴众数是90;∵共有10个数,∴中位数是第5、6个数的平均数,∴中位数是(90+90)÷2=90;∵平均数是(80×1+85×2+90×5+95×2)÷10=89;极差是:95﹣80=1.∴错误的是C.故选C.3、C【解析】解:A.x10÷x2=x8,不符合题意;B.x6﹣x不能进一步计算,不符合题意;C.x2x3=x5,符合题意;D.(x3)2=x6,不符合题意.故选C.4、C【解析】【分析】根据只有符号不同的两个数互为相反数进行解答即可得.【详解】2018与-2018只有符号不同,由相反数的定义可得2018的相反数是-2018,故选C.【点睛】本题考查了相反数的定义,熟练掌握相反数的定义是解题的关键.5、D【解析】

利用概率公式,一一判断即可解决问题.【详解】A、错误.小明还有可能是平;B、错误、小明胜的概率是

,所以输的概率是也是;C、错误.两人出相同手势的概率为;D、正确.小明胜的概率和小亮胜的概率一样,概率都是;故选D.【点睛】本题考查列表法、树状图等知识.用到的知识点为:概率=所求情况数与总情况数之比.6、A【解析】

根据三角函数的定义直接求解.【详解】在Rt△ABC中,∠C=90°,AC=9,∵,∴,解得AB=1.故选A7、C【解析】

过点E作EF∥AB,如图,易得CD∥EF,然后根据平行线的性质可得∠BAE+∠FEA=180°,∠C=∠FEC=γ,进一步即得结论.【详解】解:过点E作EF∥AB,如图,∵AB∥CD,AB∥EF,∴CD∥EF,∴∠BAE+∠FEA=180°,∠C=∠FEC=γ,∴∠FEA=β﹣γ,∴α+(β﹣γ)=180°,即α+β﹣γ=180°.故选:C.【点睛】本题考查了平行公理的推论和平行线的性质,属于常考题型,作EF∥AB、熟练掌握平行线的性质是解题的关键.8、C【解析】

根据环比和同比的比较方法,验证每一个选项即可.【详解】2017年第二季度支出948元,第一季度支出859元,所以第二季度比第一季度提高,故A正确;2017年第三季度支出1113元,第二季度支出948元,所以第三季度比第二季度提高,故B正确;2018年第一季度支出839元,2017年第一季度支出859元,所以2018年第一季度同比有所降低,故C错误;2018年第四季度支出1012元,2017年第一季度支出997元,所以2018年第四季度同比有所降低,故D正确;故选C.【点睛】本题考查折线统计图,同比和环比的意义;能够从统计图中获取数据,按要求对比数据是解题的关键.9、B【解析】

先根据同底数幂的乘法法则进行运算即可。【详解】A.;故本选项错误;B.﹣3a2•4a3=﹣12a5;故本选项正确;C.;故本选项错误;D.不是同类项不能合并;故本选项错误;故选B.【点睛】先根据同底数幂的乘法法则,幂的乘方,积的乘方,合并同类项分别求出每个式子的值,再判断即可.10、D【解析】

A、根据函数的图象可知y随x的增大而增大,故本选项错误;B、根据函数的图象可知在第二象限内y随x的增大而减增大,故本选项错误;C、根据函数的图象可知,当x<0时,在对称轴的右侧y随x的增大而减小,在对称轴的左侧y随x的增大而增大,故本选项错误;D、根据函数的图象可知,当x<0时,y随x的增大而减小;故本选项正确.故选D.【点睛】本题考查了函数的图象,函数的增减性,熟练掌握各函数的性质是解题的关键.二、填空题(本大题共6个小题,每小题3分,共18分)11、3【解析】

由折叠前后图形全等,可将阴影部分图形的周长转化为三角形周长.【详解】∵△A'DE与△ADE关于直线DE对称,∴AD=A'D,AE=A'E,C阴影=BC+A'D+A'E+BD+EC=BC+AD+AE+BD+EC=BC+AB+AC=3cm.故答案为3.【点睛】由图形轴对称可以得到对应的边相等、角相等.12、【解析】

首先去分母进而解出不等式即可.【详解】去分母得,1-2x>15移项得,-2x>15-1合并同类项得,-2x>14系数化为1,得x<-7.故答案为x<-7.【点睛】此题考查了解一元一次不等式,解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.13、4【解析】

连接把两部分的面积均可转化为规则图形的面积,不难发现两部分面积之差的绝对值即为的面积的2倍.【详解】解:连接OP、OB,∵图形BAP的面积=△AOB的面积+△BOP的面积+扇形OAP的面积,图形BCP的面积=△BOC的面积+扇形OCP的面积−△BOP的面积,又∵点P是半圆弧AC的中点,OA=OC,∴扇形OAP的面积=扇形OCP的面积,△AOB的面积=△BOC的面积,∴两部分面积之差的绝对值是点睛:考查扇形面积和三角形的面积,把不规则图形的面积转化为规则图形的面积是解题的关键.14、,1.【解析】

首先连接OA′、OB、OC,再求出∠C′BC的大小,进而利用弧长公式问题即可解决.因为△ABC是三边在正方形CBA′C″上,BC边每12次回到原来位置,2017÷12=1.08,推出当△ABC完成第2017次旋转时,BC边共回到原来位置1次.【详解】如图,连接OA′、OB、OC.∵OB=OC=,BC=2,∴△OBC是等腰直角三角形,∴∠OBC=45°;同理可证:∠OBA′=45°,∴∠A′BC=90°;∵∠ABC=60°,∴∠A′BA=90°-60°=30°,∴∠C′BC=∠A′BA=30°,∴当点A第一次落在圆上时,则点C运动的路线长为:.∵△ABC是三边在正方形CBA′C″上,BC边每12次回到原来位置,2017÷12=1.08,∴当△ABC完成第2017次旋转时,BC边共回到原来位置1次,故答案为:,1.【点睛】本题考查轨迹、等边三角形的性质、旋转变换、规律问题等知识,解题的关键是循环利用数形结合的思想解决问题,循环从特殊到一般的探究方法,所以中考填空题中的压轴题.15、【解析】试题解析:∵两个同心圆被等分成八等份,飞镖落在每一个区域的机会是均等的,其中白色区域的面积占了其中的四等份,∴P(飞镖落在白色区域)=.16、4【解析】

根据已知图象,重新构造直角三角形,利用三角形相似得出CD的长,进而利用勾股定理得出最短路径问题.【详解】如图所示:C为线段BD上一动点,分别过点B、D作AB⊥BD,ED⊥BD,连接AC、EC.设CD=x,若AB=5,DE=3,BD=12,当A,C,E,在一条直线上,AE最短,∵AB⊥BD,ED⊥BD,∴AB∥DE,∴△ABC∽EDC,∴,∴,解得:DC=.即当x=时,代数式有最小值,此时为:.故答案是:4.【点睛】考查最短路线问题,利用了数形结合的思想,可通过构造直角三角形,利用勾股定理求解.三、解答题(共8题,共72分)17、6×10+4=8248×52+4【解析】

(1)根据题目中的式子的变化规律可以解答本题;(2)根据题目中的式子的变化规律可以解答本题;(3)根据题目中的式子的变化规律可以写出第n个等式,并加以证明.【详解】解:(1)由题目中的式子可得,第⑥个等式:6×10+4=82,故答案为6×10+4=82;(2)由题意可得,48×52+4=502,故答案为48×52+4;(3)第n个等式是:n×(n+4)+4=(n+2)2,证明:∵n×(n+4)+4=n2+4n+4=(n+2)2,∴n×(n+4)+4=(n+2)2成立.【点睛】本题考查有理数的混合运算、数字的变化类,解答本题的关键是明确有理数的混合运算的计算方法.18、(1)12;(2)1【解析】

(1)根据四只鞋子中右脚鞋有2只,即可得到随手拿出一只恰好是右脚鞋的概率;(2)依据树状图即可得到共有12种等可能的结果,其中两只恰好为一双的情况有4种,进而得出恰好为一双的概率.【详解】解:(1)∵四只鞋子中右脚鞋有2只,∴随手拿出一只,恰好是右脚鞋的概率为24=1故答案为:12(2)画树状图如下:共有12种等可能的结果,其中两只恰好为一双的情况有4种,∴拿出两只,恰好为一双的概率为412=1【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.19、(1)(1)如图所示见解析;(3)4π+1.【解析】

(1)根据旋转的性质得出对应点位置,即可画出图形;

(1)利用平移的性质得出对应点位置,进而得出图形;

(3)根据△ABC扫过的面积等于扇形BCC1的面积与△A1BC1的面积和,列式进行计算即可.【详解】(1)如图所示,△A1BC1即为所求;(1)如图所示,△A1B1C1即为所求;(3)由题可得,△ABC扫过的面积==4π+1.【点睛】考查了利用旋转变换依据平移变换作图,熟练掌握网格结构,准确找出对应点位置作出图形是解题的关键.求扫过的面积的主要思路是将不规则图形面积转化为规则图形的面积.20、(1)y=﹣x﹣1;(1)△ACE的面积最大值为;(3)M(1,﹣1),N(,0);(4)满足条件的F点坐标为F1(1,0),F1(﹣3,0),F3(4+,0),F4(4﹣,0).【解析】

(1)令抛物线y=x1-1x-3=0,求出x的值,即可求A,B两点的坐标,根据两点式求出直线AC的函数表达式;

(1)设P点的横坐标为x(-1≤x≤1),求出P、E的坐标,用x表示出线段PE的长,求出PE的最大值,进而求出△ACE的面积最大值;

(3)根据D点关于PE的对称点为点C(1,-3),点Q(0,-1)点关于x轴的对称点为M(0,1),则四边形DMNQ的周长最小,求出直线CM的解析式为y=-1x+1,进而求出最小值和点M,N的坐标;

(4)结合图形,分两类进行讨论,①CF平行x轴,如图1,此时可以求出F点两个坐标;②CF不平行x轴,如题中的图1,此时可以求出F点的两个坐标.【详解】解:(1)令y=0,解得或x1=3,∴A(﹣1,0),B(3,0);将C点的横坐标x=1代入y=x1﹣1x﹣3得∴C(1,-3),∴直线AC的函数解析式是(1)设P点的横坐标为x(﹣1≤x≤1),则P、E的坐标分别为:P(x,﹣x﹣1),E(x,x1﹣1x﹣3),∵P点在E点的上方,∴当时,PE的最大值△ACE的面积最大值(3)D点关于PE的对称点为点C(1,﹣3),点Q(0,﹣1)点关于x轴的对称点为K(0,1),连接CK交直线PE于M点,交x轴于N点,可求直线CK的解析式为,此时四边形DMNQ的周长最小,最小值求得M(1,﹣1),(4)存在如图1,若AF∥CH,此时的D和H点重合,CD=1,则AF=1,于是可得F1(1,0),F1(﹣3,0),如图1,根据点A和F的坐标中点和点C和点H的坐标中点相同,再根据|HA|=|CF|,求出综上所述,满足条件的F点坐标为F1(1,0),F1(﹣3,0),,.【点睛】属于二次函数综合题,考查二次函数与轴的交点坐标,待定系数法求一次函数解析式,二次函数的最值以及平行四边形的性质等,综合性比较强,难度较大.21、(1)证明见解析;(2)四边形BCDE是菱形,理由见解析.【解析】

(1)证明△ADC≌△ABC后利用全等三角形的对应角相等证得结论.(2)首先判定四边形BCDE是平行四边形,然后利用对角线垂直的平行四边形是菱形判定菱形即可.【详解】解:(1)证明:∵在△ADC和△ABC中,∴△ADC≌△ABC(SSS).∴∠1=∠2.(2)四边形BCDE是菱形,理由如下:如答图,∵∠1=∠2,DC=BC,∴AC垂直平分BD.∵OE=OC,∴四边形DEBC是平行四边形.∵AC⊥BD,∴四边形DEBC是菱形.【点睛】考点:1.全等三角形的判定和性质;2.线段垂直平分线的性质;3.菱形的判定.22、(1)16;(2)平均数是3,众数是10,中位数是3;(3)1.【解析】

(1)根据有7名留守儿童班级有2个,所占的百分比是2.5%,即可求得班级的总个数,再求出有8名留守儿童班级的个数,进而补全条形统计图;(2)将这组数据按照从小到大排列即可求得统计的这组留守儿童人数数据的平均数、众数和中位数;(3)利用班级数60乘以(2)中求得的平均数即可.【详解】解:(1)该校的班级数是:2÷2.5%=16(个).则人数是8名的班级数是:16﹣1﹣2﹣6﹣2=5(个).条形统计图补充如下图所示:故答案为16;(2)每班的留守儿童的平均数是:(1×6+2×7+5×

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论