版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省青岛市华东师范大学青岛实验中学2021-2022学年七年级下学期期中数学试题一、选择题1.下列运算正确的是()A. B. C. D.【答案】D【解析】【分析】根据合并同类项,幂的乘方与同底数幂的乘法运算法则进行计算即可.【详解】A.,故A不符合题意;B.,故B不符合题意;C.和不能合并,故C不符合题意;D.,故D符合题意;故选D.【点睛】本题考查了合并同类项,幂的乘方与同底数幂的乘法,熟练掌握它们的运算法则是解本题的关键.2.如图,下列说法不正确的是()A.∠1与∠3是同位角 B.∠1与∠2是内错角C.∠C与∠2是同旁内角 D.∠A与∠2是同位角【答案】A【解析】【分析】根据同位角,内错角和同旁内角的定义判断四个选项即可.【详解】解:∠1和∠3不是同位角,∠1和∠2的对顶角才是同位角,故A符合题意.故选:A.【点睛】本题考查同位角,内错角和同旁内角的定义,熟练掌握这些知识点是解题关键.3.在实验课上,小亮利用同一块木板测得小车从不同高度下滑的时间,支撑物高度()与下滑的时间()的关系如下表:支撑物高()1020304050…下滑时间()3.253.012.812.662.56…以下结论错误的是()A.当时,约2.66秒B.随支撑物高度增加,下滑时间越来越短C.支撑物高度每增加了,时间就会减少0.24秒D.估计当时,一定小于2.56秒【答案】C【解析】【分析】根据表格中数量的变化情况,分别进行判断即可.【详解】解:当支撑物高度从10cm升高到20cm,下滑时间的减少0.24s;从20cm升高到30cm时,下滑时间就减少0.2s;从30cm升高到40cm时,下滑时间就减少0.15s;从40cm升高到50cm时,下滑时间就减少0.1s;因此,“高度每增加了10cm,时间就会减少0.2秒”是错误的.由表中数据可知A、B、D三个选项正确;故选:C【点睛】本题考查变量之间的关系,理解表格中两个变量之间的变化关系是解题的关键.4.研究表明,某新型冠状病毒体大小约为125纳米也就是0.125微米,而95口罩能过滤0.3微米的颗粒,并不能将病毒过滤,口罩的作用是阻挡病毒传播的“载体”,而非直接挡住病毒.1纳米就是0.000000001米.那么0.3微米用科学记数法表示为()A.米 B.米 C.米 D.米【答案】D【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:∵1微米=0.000001米=1×10-6米,∴0.3微米=0.3×1×10-6米=3×10-7米,故选:D.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.5.小明有足够多的如图所示的正方形卡片,和长方形卡片,如果他要拼一个长为,宽为的大长方形,共需要类卡片().A.张 B.张 C.张 D.张【答案】A【解析】【分析】根据题意算出长方形的面积即可判断.详解】(a+2b)(a+b),=a2+ab+2ab+2b2,=a2+3ab+2b2,由此可以看出C类卡片需要3张故选A.【点睛】本题考查多项式乘以多项式,熟练掌握运算法则是解本题的关键.6.如图,在下列给出的条件中,能判定AB∥DF的是()A.∠1=∠A B.∠A=∠3 C.∠3=∠4 D.∠2+∠4=180°【答案】B【解析】【分析】根据平行线的判定定理逐项进行判断,即可作答.【详解】解:A、∵,∴DE∥AC,故该选项错误,不符合题意;B、∵=,∴AB∥DF,故该选项正确,符合题意;C、∵,∴ED∥AC,故该选项错误,不符合题意;D、∵∠2+∠4=180°,∴DE∥AC,故该选项错误,不符合题意.故选:B.【点睛】本题考查了平行线的判定定理,熟练运用平行线的判定定理是解题的关键,即即①同位角相等,两直线平行,②内错角相等,两直线平行,③同旁内角互补,两直线平行.7.如图,直线,点E,F分别在直线AB和直线CD上,点P在两条平行线之间,和的角平分线交于点H,已知,则的度数为()A.92° B. C. D.【答案】C【解析】【分析】过点作//,过点作//,根据平行线的性质得到∠,结合角平分线的定义得到∠,同理可得∠【详解】解:过点作//,过点作//,∵//∴////∴∠∵∠∴∠∴∠∵平分∠,平分∠∴∠同理可得,∠故选:C【点睛】本题主要考查了平行线的判定与性质,解决问题的关键是作平行线构造内错角,利用两直线平行内错角相等得出结论8.现有甲、乙两个正方形纸片,将甲、乙并列放置后得到图1,已知点H为AE的中点,连结DH,FH.将乙纸片放到甲的内部得到图2.已知甲、乙两个正方形边长之和为8,图2的阴影部分面积为6,则图1的阴影部分面积为()A.19 B.28 C.77 D.21【答案】A【解析】【分析】设甲正方形纸片的边长为a,乙正方形纸片的边长为b.根据题意得a+b=8,,再根据完全平方公式求出,再结合图1用甲,乙两个正方形面积减去△DAH和△HEF的面积,并代入计算即可求出阴影部分的面积.【详解】解:设甲正方形纸片的边长为a,乙正方形纸片的边长为b.∴AD=AB=a,BE=FE=b,甲正方形面积S甲=a2,乙正方形的面积S乙=b2.∵甲、乙两个正方形边长之和为8,图2的阴影部分面积为6,∴a+b=8,AE=AB+BE=8,.∴.∴.∴.∵点H为AE的中点,∴AH=HE=4.∴,.∴S阴=S甲+S乙.故选:A.【点睛】本题考查完全平方公式的应用,三角形面积公式,正方形面积公式,正确对完全平方公式进行等价变形是解题关键.二、填空题9.小明家离学校距离3千米,上学时小明骑自行车以10千米/小时速度走了x小时,这时离学校还有y千米.写出y与x的函数表达式_____.【答案】y=3-10x##y=-10x+3【解析】【分析】根据小明离学校的距离=小明家离学校距离-小明骑自行车行驶的距离,列出表达式即可.【详解】解:∵小明家离学校距离3千米,上学时小明骑自行车以10千米/小时速度走了x小时,∴小明离学校的距离.故答案为:.【点睛】此题考查了一次函数的应用题,解题的关键是正确分析题目中的等量关系.10.一个角的补角与这个角的余角的差是__________°.【答案】90【解析】【分析】设∠A=x,表示出∠A的补角和余角,再计算即可.【详解】解:设∠A=x.则∠A的补角是,∠A的余角是.∴∠A的补角与∠A的余角的差是.故答案为:90.【点睛】本题考查求角的补角,求角的余角,熟练掌握这些知识点是解题关键.11.已知2x=6,4y=7,那么2x+2y的值是_____.【答案】42【解析】【分析】逆用同底数幂的乘法法则和幂的乘方进行运算即可得到答案.【详解】解:∵4y=7,2x=6,∴∴故答案为:42【点睛】本题主要考查了幂的逆运算,熟练掌握相关运算法则是解答本题的关键.12.如图所示,把一个长方形纸片ABCD沿EF折叠后,点D,C分别落在点,位置,恰好在BC上,若∠,则等于_______°.【答案】【解析】【分析】根据补角和轴对称的性质,得,从而得,再根据平行线的性质分析,即可得到答案.【详解】如图,∵,∴,根据题意,得,∴,∵长方形纸片ABCD,∴,∴,∴,故答案为:.【点睛】本题考查了平行线、补角、轴对称的知识;解题的关键是熟练掌握平行线、轴对称的性质,从而完成求解.13.若9x2+(m﹣3)x+1是完全平方式,则m的值为_____.【答案】9或﹣3##﹣3或9【解析】【分析】利用完全平方公式的结构特征判断即可确定出m的值.【详解】解:∵9x2+(m﹣3)x+1是完全平方式,∴9x2+(m﹣3)x+1=∴,解得m=9或﹣3.故答案为:9或﹣3.【点睛】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.14.如图1,在某个底面积为20cm2盛水容器内,有一个实心圆柱体铁块,现在匀速持续地向容器内注水,容器内水的的高度y(cm)和注水时间x(s)之间的关系满足如图中的图象,则水流速度是_______cm3/s.【答案】【解析】【分析】由图可知:5s时,水面刚好到达实心圆柱体铁块顶端,5s后水面高度不受实心圆柱体铁块影响,用接下来6s钟内注入水的体积除以时间即可求解.【详解】解:由图可知:5s时,水面刚好到达实心圆柱体铁块顶端,5s后水面高度不受实心圆柱体铁块影响,则水流速度为cm3/s.故答案为:.【点睛】本题考查了从函数图像上获取信息,从图像上正确获取信息是解题关键.15.将一副三角板按如图放置,则下列结论:①;②如果,则有;③∠2+∠CAD=180°;④如果,必有AB⊥ED.其中正确的有___________.(填写序号)【答案】①②③④【解析】【分析】设AB与DE交于点M.根据角的和差关系可判断①符合题意;根据角的和差关系和平行线的判定定理可判断②符合题意;根据角的和差关系可判断③符合题意;根据平行线的判定定理和性质可判断④符合题意.【详解】解:∵∠CAB=90°,∠EAD=90°,∴∠CAB=∠EAD.∴∠CAB-∠2=∠EAD-∠2,即∠1=∠3.故①符合题意.若∠2=30°.∴∠3=∠EAD-∠2=60°.∴∠CAD=∠CAB+∠3=150°.∵∠D=30°,∴∠CAD+∠D=180°.∴.故②符合题意.∵∠CAB=90°,∠EAD=90°,∴∠2+∠CAD=∠2+∠3+∠CAB=∠EAD+∠CAB=180°.故③符合题意.如下图所示,设AB与DE交于点M.∵∠4=∠C,∴.∴∠AMD=∠CAB=90°.∴AB⊥ED.故④符合题意.故①②③④符合题意.故答案为:①②③④.【点睛】本题考查平行线的判定定理和性质,角的和差关系,熟练掌握这些知识点是解题关键.16.已知动点P以每秒2cm的速度沿图1的边框按从B→C→D→E→F→A的路径移动,相应的△ABP的面积S(cm2)与时间t(秒)之间的关系如图2中的图象所示.其中AB=6cm,a=____,当t=_____时,△ABP的面积是18cm2.【答案】①.24②.3或14##14或3【解析】【分析】根据题意得:动点P在BC上运动的时间及动点的速度,可得BC、CD、DE、EF、AF的长;再根据三角形的面积公式解答即可.【详解】解:动点P在BC上运动时,对应的时间为0到4秒,易得:BC=2cm/秒×4秒=8(cm);动点P在CD上运动时,对应的时间为4到6秒,易得:CD=2cm/秒×(6﹣4)秒=4(cm);动点P在DE上运动时,对应的时间为6到9秒,易得:DE=2cm/秒×(9﹣6)秒=6(cm),故图1中的BC长是8cm,DE=6cm,EF=6﹣4=2(cm),∴AF=BC+DE=8+6=14(cm),∴可知a=×AB×BC=24,当点P在BC上运动时,△ABP的面积S=×AB×2t=6t,由△ABP的面积S=18得6t=18,解得t=3,当点P在AF上运动时,△ABP的面积S=AB(BC+CD+DE+EF+FA﹣2t)=18,解得t=14故答案为:24,3或14.【点睛】本题考查动点问题的函数图象,解题的关键是读懂图意,明确横轴与纵轴的意义.三、解答题17.作图题:(1)在如图所示的方格纸中不用量角器与三角尺,仅用直尺.①经过点P,画线段PQ平行于AB所在直线.②过点C,画线段CN垂直于CB所在直线.(2)尺规作图:(用圆规直尺)如图,点C在∠AOB的边OA上一点,请你使用直尺和圆规,过点C作直线OB的平行线.(保留作图痕迹,不要求写画法).【答案】(1)见解析(2)见解析【解析】【分析】(1)①在AB上取格点D,根据B到P的移动规律将D移动到Q,连接即可;②找到格点M,易找到点F,再通过M到E的移动规律,找到点N,连接即可;(2)过点C作的同位角即可.【小问1详解】解:①、在AB上取格点D,因为点B先向上1格,再向右平移4格到点P,则将点D向上1格,再向右平移4格即为点Q,连接PQ,则PQ即为所求;②、如图找到与点C在一条线上的格点M,则将点C竖直向上平移6个格点,记作点F,则MC垂直于FC,在BC上找到格点E,M向上平移一个格点到E,则将F向右平移一个格点即为N,连接CN,则CN即为所求;【小问2详解】作法:(1)、以O为圆心,任意长为半径化弧,分别交OA与OB于M、N,(2)、以点C为圆心,OM长为半径化弧,交OA于点E.(3)、以点E为圆心,以MN的长为半径画弧,交上一弧与点F,则直线CF即为所求.【点睛】本题考查了格点作图,和平行线的尺规作图,熟练掌握基本作图方法是解题的关键.18.计算题:(1)(2x2y)3(﹣7xy2);(2)+(0.25)2020×42022;(3)(x﹣1)2(x+1)2;(4)(2a+3b﹣c)(2a﹣3b+c);(5)先化简,再求值:,其中,.【答案】(1)(2)(3)(4)(5)14【解析】【分析】(1)根据幂的运算法则,积的运算法则,单项式乘单项式运算法则计算即可.(2)根据整数指数幂的运算法则和含乘方的有理数的混合运算法则计算即可.(3)根据整式的混合运算法则计算即可.(4)根据整式的混合运算法则计算即可.(5)根据整式的混合运算法则化简,再代入计算即可.【小问1详解】解:原式.【小问2详解】解:原式.【小问3详解】解:原式.【小问4详解】解:原式.【小问5详解】解:原式.当x=2,y=-1时,原式.【点睛】本题考查整式的混合运算,含乘方的有理数的混合运算,整数指数幂,熟练掌握这些知识点是解题关键.19.请根据题目中的逻辑关系填空:已知:如图,∠1+∠AFE=180°,∠A=∠2,求证:∠A=∠C+∠AFC证明:∵∠1+∠AFE=180°∴CD∥EF(①)∵∠A=∠2
∴②(③)∴AB∥CD∥EF.∴∠A=④,∠C=⑤,(⑥)∵∠AFE=∠EFC+∠AFC,∴⑦.(等量代换)【答案】同旁内角互补两直线平行,,同位角相等两直线平行,,,两直线平行内错角相等,【解析】【分析】根据平行线的判定可判定则,再由平行线性质可得:,,最后等量代换即可求解.【详解】证明:∵∠1+∠AFE=180°∴CD∥EF(同旁内角互补,两直线平行),∵∠A=∠2∴(同位角相等,两直线平行)∴AB∥CD∥EF.,(两直线平行内错角相等)∵∠AFE=∠EFC+∠AFC,(等量代换).故答案为:同旁内角互补两直线平行,,同位角相等两直线平行,,,两直线平行内错角相等,.【点睛】本题考查了平行线的判定与性质,熟练掌握平行线的判定与性质定理是解题的关键.20.图1,已知△ABC中,BC=6,AF为BC边上的高,P是BC上一动点,沿BC由B向C运动,连接AP,在这个变化过程中设BP=x,且把x看成自变量,设△APC的面积为S,图2刻画的是S随x变化而变化的图象.根据图象回答以下问题:(1)①中M点代表的意义是.②△ABC的高AF的长为.③出S与x的关系式.④a的值为.(2)设△ABP的面积为y,写出y与x的关系式,并求当x为何值时,△APC的面积与△ABP的面积相等?【答案】(1)①BP=1时,△APC的面积为10;②4;③s=12﹣2x;④6;(2)y=2x,x=3【解析】【分析】(1)①M点代表的意义是:BP=1时,△APC的面积为10,即可求解;②x=0时,S=S△ABC=12=BC×FA=×6×AF,即可求解;③S=×(6﹣x)×AF,即可求解;④S=0,即可求解;(2)y=BP×AF=2x,当y=S时,△APC的面积与△ABP的面积相等,即可求解.【小问1详解】解:①M点代表的意义是:BP=1时,△APC的面积为10,故答案为:BP=1时,△APC的面积为10;②x=0时,S=S△ABC=12=BC×FA=×6×AF,则AF=4,故答案为:4;③S=×(6﹣x)×AF=12﹣2x,故答案为:s=12﹣2x;④S=12﹣2x=0,解得:x=6,即a=6,故答案为:6;【小问2详解】解:y=BP×AF=2x,当y=S时,△APC的面积与△ABP的面积相等,即:12﹣2x=2x,解得:x=3,故x=3时,△APC的面积与△ABP的面积相等.【点睛】本题考查了动点问题的函数图象.解题关键是深刻理解动点的函数图象,了解图象中关键点所代表的实际意义,理解动点的完整运动过程.21.如图,,.求证:AB∥CE.【答案】证明见解析.【解析】【分析】根据平行线的判定定理即可求解.【详解】证明:,,,,.,,.【点睛】此题主要考查平行线的判定,解题的关键是熟知平行线的性质及判定定理.22.学校组织同学们去郊区实践活动,安排校车送同学们,大多数同学选择在学校乘车,学校还安排了第二个站点接学生,在第二个站点停车的时间为十分钟。小明迟到了没有赶上校车,只能让爸爸开私家车从学校出发独自去目的地。如图是校车和私家车离开学校的路程y千米随时间x分钟的变化图像。认真分析图中的信息,回答下列问题:(1)小明迟到了分钟,先到目的地;(填小明或校车)(2)校车第二次开动后的速度是km/h;(3)小明出发后用多长时间追上校车?在距离目的地多远的地方追上校车?【答案】(1)30,小明(2)30(3)小明出发后用了分钟追上校车,在距离目的地千米的地方追上校车【解析】【分析】(1)由观察图像即可得到;(2)校车在30分钟后继续开动,开动到60分钟,一共花费了小时走了15千米,用速度等于路程除以时间即可;(3)用待定系数法,求出私家车的图像解析式和校车第二次启动后的图像解析式,求其交点即可求解.【小问1详解】解:由图像可知:30分钟后,私家车离开学校的路程y才开始增加,所以小明迟到了30分钟,又有50分钟时私家车离学校25千米,60分钟校车离学校25千米,所以小明先到目的地;故答案为:30,小明;【小问2详解】由图像可知:校车在30分钟后继续开动,校车行驶的时间为(分钟),30分钟=小时,则校车第二次开动后的速度是:(km/h);故答案为:30;【小问3详解】设私家车的函数解析式为:,将(30,0),(50,25)代入得:,得到:,私家车的函数解析式为:,设校车第二次启动后的解析式为:,将代入得:解得:,校车第二次启动后的解析式为:,则由解得:,(分钟),(千米),∴小明出发后用了分钟追上校车,在距离目的地千米的地方追上校车.【点睛】本题考查了函数图像的信息识别,一次函数的应用,待定系数法求解析式,两直线交点问题,正确获取函数图像信息,熟练掌握待定系数法求解析式是解题的关键.23.现有长与宽分别为a、b小长方形若干个,用两个这样的小长方形拼成如图1的图形,用四个相同的小长方形拼成图2的图形,请认真观察图形,解答下列问题:(1)根据图中条件,请写出图1和图2所验证的关于a、b的关系式:(用含a、b的代数式表示出来);图1表示:;图2表示:;(2)根据上面的解题思路与方法,解决下列问题:①若x+y=8,x2+y2=40,求xy的值;②请直接写出下列问题答案:若2m+3n=5,mn=1,则2m﹣3n=;若(4﹣m)(5﹣m)=6,则(4﹣m)2+(5﹣m)2=.(3)如图3,点C是线段AB上的一点,以AC,BC为边向两边作正方形,设AB=7,两正方形的面积和S1+S2=16,求图中阴影部分面积.【答案】(1);(2)①12;②±1,13(3)【解析】【分析】(1)由图1可知,大正方形的面积等于两个小正方形的面积加上两个长方形的面积可得;由图2可知,大正方形的面积等于小正方形的面积加上4个长方形的面积可得;(2)①把两边平方后,再代入x2+y2=40,即可求出的值;②根据将原式变形求解即可;(3)设,得,把变形为,再代入求值即可【小问1详解】图1表示为:;图2表示为:故答案为:;【小问2详解】①∵∴∵x2+y2=40∴∴;②由图2知,则∴∵∴∴∴;∵,即设∵(4﹣m)(5﹣m)=6,∴∴故答案为:±1;13【小问3详解】设∵∴∴∴∴∴【点睛】本题考查完全平方公式的几何背景,用两种方法表示同一个图形面积是求解本题的关键.24.【阅读理解】:两条平行线间的拐点问题经常可以通过作一条直线的平行线进行转化.例如:如图1,,点C、B分别在直线MN、PQ上,点A在直线MN、PQ之间.(1)求证:∠CAB=∠MCA+∠PBA;证明:如图1,过点A作,∵,,∴,∴∠MCA=∠DAC,∠PBA=∠DAB,∴∠CAB=∠DAC+∠DAB=∠MCA+∠PBA,即:∠CAB=∠MCA+∠PBA;【类比应用】已知直线,P平面内一点,连接PA、PD.(1)如图2,已知∠A=50°,∠D=150°,求∠APD的度数;说明理由.(2)如图3,设、、直接写出、、∠P之间的数量关系为______.【联系拓展】如图4,直线,P为平面内一点,连接PA、PD.AP⊥PD,DN平分∠PDC,若,运用(2)中的结论,求∠N的度数.说明理由.【答案】(1)∠APD=80°;(2)∠a+∠β-∠P=180°;(3)∠N的度数为45°【解析】【分析】(1)过点P
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电池签字购销合同
- 宣传册印刷订购合同
- 人才借调三方协议模板
- 股权合伙合同模板示例
- 股东借款合同范本模板示例定制
- 2024旅游包车网简单旅游包车合同范本
- 日用化学产品口水鸡类考核试卷
- 新能源汽车产业链的企业战略规划与实施考核试卷
- 朋友宠物寄养合同模板
- 猪场转让协议合同范例
- GB/T 22427.9-2008淀粉及其衍生物酸度测定
- GB/T 20897.4-2019充气艇第4部分:发动机额定功率为15 kW及以上且船长在8 m~24 m之间的艇
- 班会-学霸的炼成
- 临安遗恨-古筝+钢琴五线谱
- 抽象代数复习习题及答案
- 薪酬管理分析报告5篇
- 台海局势之我见课件
- 药学类之药学(中级)题库大全包过题库及参考答案
- 中医师承拜师合同公证书(通用)
- 2019年上海闵行区初三英语二模卷(高清版-附听力文稿、答案)
- 解剖学 第七章 生殖系统课件
评论
0/150
提交评论