山东省泰安市泰山区大津口中学2025届数学九上期末监测试题含解析_第1页
山东省泰安市泰山区大津口中学2025届数学九上期末监测试题含解析_第2页
山东省泰安市泰山区大津口中学2025届数学九上期末监测试题含解析_第3页
山东省泰安市泰山区大津口中学2025届数学九上期末监测试题含解析_第4页
山东省泰安市泰山区大津口中学2025届数学九上期末监测试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省泰安市泰山区大津口中学2025届数学九上期末监测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.下列事件不属于随机事件的是()A.打开电视正在播放新闻联播 B.某人骑车经过十字路口时遇到红灯C.抛掷一枚硬币,出现正面朝上 D.若今天星期一,则明天是星期二2.一个不透明的袋子中有3个白球,4个黄球和5个红球,这些球除颜色不同外,其他完全相同.从袋子中随机摸出一个球,则它是黄球的概率是()A. B. C. D.3.如图,P为平行四边形ABCD的边AD上的一点,E,F分别为PB,PC的中点,△PEF,△PDC,△PAB的面积分别为S,,.若S=3,则的值为()A.24 B.12 C.6 D.34.下列事件是必然事件的是()A.打开电视机,正在播放篮球比赛 B.守株待兔C.明天是晴天 D.在只装有5个红球的袋中摸出1球,是红球.5.一元二次方程x2﹣4x+5=0的根的情况是()A.没有实数根 B.只有一个实数根C.有两个相等的实数根 D.有两个不相等的实数根6.如图,在平面直角坐标中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,点A,B,E在x轴上.若正方形ABCD的边长为2,则点F坐标为()A.(8,6) B.(9,6) C. D.(10,6)7.下列四张印有汽车品牌标志图案的卡片中,是中心对称图形的卡片是()A. B. C. D.8.如图,AB是⊙O直径,若∠AOC=140°,则∠D的度数是()A.20° B.30° C.40° D.70°9.已知线段MN=4cm,P是线段MN的黄金分割点,MP>NP,那么线段MP的长度等于()A.(2+2)cm B.(2﹣2)cm C.(+1)cm D.(﹣1)cm10.剪纸是中国特有的民间艺术.以下四个剪纸图案中,既是轴对称图形又是中心对称图形的是()A. B. C. D.11.如图,空地上(空地足够大)有一段长为的旧墙,小敏利用旧墙和木栏围成一个矩形菜园,已知木栏总长,矩形菜园的面积为.若设,则可列方程()A. B.C. D.12.如图,A、B、C是⊙O上互不重合的三点,若∠CAO=∠CBO=20°,则∠AOB的度数为()A.50° B.60° C.70° D.80°二、填空题(每题4分,共24分)13.如图,反比例函数的图象位于第一、三象限,且图象上的点与坐标轴围成的矩形面积为2,请你在第三象限的图象上取一个符合题意的点,并写出它的坐标______________.14.如图,的弦,半径交于点,是的中点,且,则的长为__________.15.若有一组数据为8、4、5、2、1,则这组数据的中位数为__________.16.如图,在平行四边形中,点在边上,,连接交于点,则的面积与四边形的面积之比为___17.如图,点P在函数y=的图象上,PA⊥x轴于点A,PB⊥y轴于点B,且△APB的面积为4,则k等于_____.18.如果点A(2,﹣4)与点B(6,﹣4)在抛物线y=ax2+bx+c(a≠0)上,那么该抛物线的对称轴为直线_____.三、解答题(共78分)19.(8分)在四张背面完全相同的纸牌A、B、C、D,其中正面分别画有四个不同的几何图形(如图),小华将这4张纸牌背面朝上洗匀后摸出一张,放回洗匀后再摸一张.(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌可用A、B、C、D表示);(2)求摸出两张纸牌牌面上所画几何图形,既是轴对称图形又是中心对称图形的概率.20.(8分)姐妹两人在50米的跑道上进行短路比赛,两人从出发点同时起跑,姐姐到达终点时,妹妹离终点还差3米,已知姐妹两人的平均速度分别为a米/秒、b米/秒.(1)如果两人重新开始比赛,姐姐从起点向后退3米,姐妹同时起跑,两人能否同时到达终点?若能,请求出两人到达终点的时间;若不能,请说明谁先到达终点.(2)如果两人想同时到达终点,应如何安排两人的起跑位置?请你设计两种方案.21.(8分)若关于的一元二次方程方有两个不相等的实数根.⑴求的取值范围.⑵若为小于的整数,且该方程的根都是有理数,求的值.22.(10分)请画出下面几何体的三视图23.(10分)解方程:(1);(2).24.(10分)定义:点P在△ABC的边上,且与△ABC的顶点不重合.若满足△PAB、△PBC、△PAC至少有一个三角形与△ABC相似(但不全等),则称点P为△ABC的自相似点.如图①,已知点A、B、C的坐标分别为(1,0)、(3,0)、(0,1).(1)若点P的坐标为(2,0),求证点P是△ABC的自相似点;(2)求除点(2,0)外△ABC所有自相似点的坐标;(3)如图②,过点B作DB⊥BC交直线AC于点D,在直线AC上是否存在点G,使△GBD与△GBC有公共的自相似点?若存在,请举例说明;若不存在,请说明理由.25.(12分)如果某人滑雪时沿着一斜坡下滑了130米的同时,在铅垂方向上下降了50米,那么该斜坡的坡度是1∶_______26.计算题:|﹣3|+tan30°﹣﹣(2017﹣π)0+()-1.

参考答案一、选择题(每题4分,共48分)1、D【分析】不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.据此可判断出结论.【详解】A.打开电视正在播放新闻联播,是随机事件,不符合题意;B.某人骑车经过十字路口时遇到红灯,是随机事件,不符命题意;C.抛掷一枚硬币,出现正面朝上,是随机事件,不符合题意,D.若今天星期一,则明天是星期二,是必然事件,符合题意.故选:D.【点睛】此题考查了必然事件、不可能事件、随机事件的概念.关键是理解不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.2、B【分析】利用概率公式直接计算即可.【详解】解:根据题意可得:袋子中有有3个白球,4个黄球和5个红球,共12个,从袋子中随机摸出一个球,它是黄色球的概率.故选B.【点睛】本题考查概率的计算,掌握公式正确计算是本题的解题关键.3、B【详解】过P作PQ∥DC交BC于点Q,由DC∥AB,得到PQ∥AB,∴四边形PQCD与四边形APQB都为平行四边形,∴△PDC≌△CQP,△ABP≌△QPB,∴S△PDC=S△CQP,S△ABP=S△QPB,∵EF为△PCB的中位线,∴EF∥BC,EF=BC,∴△PEF∽△PBC,且相似比为1:2,∴S△PEF:S△PBC=1:4,S△PEF=3,∴S△PBC=S△CQP+S△QPB=S△PDC+S△ABP==1.故选B.4、D【分析】根据必然事件、不可能事件、随机事件的概念进行解答即可.【详解】解:打开电视机,正在播放篮球比赛是随机事件,不符合题意;守株待兔是随机事件,不符合题意;明天是晴天是随机事件,不符合题意在只装有5个红球的袋中摸出1球,是红球是必然事件,D符合题意.故选:D.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5、A【解析】首先求出一元二次方程根的判别式,然后结合选项进行判断即可.【详解】解:∵一元二次方程,∴△=,即△<0,∴一元二次方程无实数根,故选A.【点睛】本题主要考查了根的判别式的知识,解题关键是要掌握一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.6、B【分析】直接利用位似图形的性质结合相似比得出EF的长,进而得出△OBC∽△OEF,进而得出EO的长,即可得出答案.【详解】解:∵正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,∴,∵BC=2,∴EF=BE=6,∵BC∥EF,∴△OBC∽△OEF,∴,解得:OB=3,∴EO=9,∴F点坐标为:(9,6),故选:B.【点睛】此题主要考查了位似变换以及相似三角形的判定与性质,正确得出OB的长是解题关键.7、B【解析】根据中心对称图形的概念:如果一个图形绕某一个点旋转180°后能与它自身重合,我们就把这个图形叫做中心对称图形,逐一判断即可.【详解】A.不是中心对称图形,故错误;B.是中心对称图形,故正确;C.不是中心对称图形,故错误;D.不是中心对称图形,故错误;故选:B.【点睛】本题主要考查中心对称图形,掌握中心对称图形的概念是解题的关键.8、A【分析】根据邻补角的性质,求出∠BOC的值,再根据圆周角与圆心角的关系求出∠D的度数即可.【详解】∵∠AOC=140°,∴∠BOC=180°-∠AOC=40°,∵∠BOC与∠BDC都对,∴∠D=∠BOC=20°,故选A.【点睛】本题考查了圆周角定理,知道同弧所对的圆周角是圆心角的一半是解题的关键.9、B【解析】根据黄金分割的定义进行作答.【详解】由黄金分割的定义知,,又MN=4,所以,MP=22.所以答案选B.【点睛】本题考查了黄金分割的定义,熟练掌握黄金分割的定义是本题解题关键.10、B【解析】根据轴对称图形的定义以及中心对称图形的定义分别判断即可得出答案.【详解】解:A、此图形是轴对称图形,不是中心对称图形,故此选项错误;

B、此图形是轴对称图形,也是中心对称图形,故此选项正确;

C、此图形不是轴对称图形,也不是中心对称图形,故此选项错误;D、此图形不是轴对称图形,是中心对称图形,故此选项错误.故选:B.【点睛】此题主要考查了中心对称图形与轴对称图形的定义,熟练掌握其定义是解决问题的关键.11、B【分析】设,则,根据矩形面积公式列出方程.【详解】解:设,则,由题意,得.故选.【点睛】考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.12、D【分析】连接CO并延长交⊙O于点D,根据等腰三角形的性质,得∠CAO=∠ACO,∠CBO=∠BCO,结合三角形外角的性质,即可求解.【详解】连接CO并延长交⊙O于点D,∵∠CAO=∠ACO,∠CBO=∠BCO,∴∠CAO=∠ACO=∠CBO=∠BCO=20°,∴∠AOD=∠CAO+∠ACO=40°,∠BOD=∠CBO+∠BCO=40°,∴∠AOB=∠AOD+∠BOD=80°.故选D.【点睛】本题主要考查圆的基本性质,三角形的外角的性质以及等腰三角形的性质,添加和数的辅助线,是解题的关键.二、填空题(每题4分,共24分)13、满足的第三象限点均可,如(-1,-2)【分析】因为过双曲线上任意一点引x轴、y轴垂线,所得矩形面积S是个定值,即S=|k|.【详解】解:∵图象上的点与坐标轴围成的矩形面积为2,

∴|k|=2,

∴反比例函数y=的图象在一、三象限,k>0,

∴k=2,

∴此反比例函数的解析式为.∴第三象限点均可,可取:当x=-1时,y=-2综上所述,答案为:满足的第三象限点均可,如(-1,-2)【点睛】本题考查的是反比例函数系数k的几何意义,即过反比例函数图象上任意一点向两坐标轴引垂线,所得矩形的面积为|k|.14、2【分析】连接OA,先根据垂径定理求出AO的长,再设ON=OA,则MN=ON-OM即可得到答案.【详解】解:如图所示,连接OA,∵半径交于点,是的中点,∴AM=BM==4,∠AMO=90°,∴在Rt△AMO中OA==5.∵ON=OA,∴MN=ON-OM=5-3=2.故答案为2.【点睛】本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.15、4【分析】根据中位数的定义求解即可.【详解】解:将数据8、4、5、2、1按从小到大的顺序排列为:1、2、4、5、8,所以这组数据的中位数为4.故答案为:4.【点睛】本题考查了中位数的定义,属于基本题型,解题的关键是熟知中位数的概念.16、【分析】由DE:EC=3:1,可得DF:FB=3:4,根据在高相等的情况下三角形面积比等于底边的比,可得S△EFD:S△BEF=3:4,S△BDE:S△BEC=3:1,可求△DEF的面积与四边形BCEF的面积的比值.【详解】解:连接BE

∵DE:EC=3:1

∴设DE=3k,EC=k,则CD=4k

∵ABCD是平行四边形

∴AB∥CD,AB=CD=4k,∴,∴S△EFD:S△BEF=3:4

∵DE:EC=3:1

∴S△BDE:S△BEC=3:1

设S△BDE=3a,S△BEC=a

则S△EFD=,,S△BEF=,∴SBCEF=S△BEC+S△BEF=,∴则△DEF的面积与四边形BCEF的面积之比9:19

故答案为:.【点睛】本题考查了平行线分线段成比例,平行四边形的性质,关键是运用在高相等的情况下三角形面积比等于底边的比求三角形的面积比值.17、-1【解析】由反比例函数系数k的几何意义结合△APB的面积为4即可得出k=±1,再根据反比例函数在第二象限有图象即可得出k=﹣1,此题得解.【详解】∵点P在反比例函数y=的图象上,PA⊥x轴于点A,PB⊥y轴于点B,∴S△APB=|k|=4,∴k=±1.又∵反比例函数在第二象限有图象,∴k=﹣1.故答案为﹣1.【点睛】本题考查了反比例函数系数k的几何意义,熟练掌握“在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|是解题的关键.18、x=4【解析】根据函数值相等的点到抛物线对称轴的距离相等,可由点A(1,-4)和点B(6,-4)都在抛物线y=ax²+bx+c的图象上,得到其对称轴为x==1.故答案为x=4.三、解答题(共78分)19、(1)详见解析;(2).【详解】试题分析:(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由既是轴对称图形又是中心对称图形的有4种情况,直接利用概率公式求解即可求得答案.试题解析:解(1)画树状图得:则共有16种等可能的结果;(2)∵既是中心对称又是轴对称图形的只有B、C,∴既是轴对称图形又是中心对称图形的有4种情况,∴既是轴对称图形又是中心对称图形的概率为:.考点:列表法与树状图法.20、(1)姐姐用时秒,妹妹用时秒,所以不能同时到,姐姐先到;(2)姐姐后退米或妹妹前进3米【分析】(1)先求出姐姐和妹妹的速度关系,然后求出再次比赛时两人用的时间,从而得出结论;(2)2种方案,姐姐退后或者妹妹向前,要想同时到达终点,则比赛用时相等,根据这个关系列写等量关系式并求解.【详解】(1)∵姐姐到达终点是,妹妹距终点还有3米∴姐姐跑50米和妹妹跑47米的时间相同,设这个时间为:即:∴a=50k,b=47k则再次比赛,姐姐的时间为:=秒妹妹的时间为:秒∵,∴<,即姐姐用时短,姐姐先到达终点(2)情况一:姐姐退后x米,两人同时到达终点则:=,解得:x=情况二:妹妹向前y米,两人同时到达终点则:=,解得:y=3综上得:姐姐退后米或妹妹前进3米,两人同时到达终点【点睛】本题考查行程问题,解题关键是引入辅助元k,用于表示姐姐和妹妹的速度关系.21、(1)且.(2)或【分析】(1)根据一元二次方程根的判别式,即可求出答案;(2)结合(1),得到m的整数解,由该方程的根都是有理数,即可得到答案.【详解】解:(1)∵方程有两个不相等的实数根,,解得:又,的取值范围为:且;(2)为小于的整数,又且.可以取:,,,,,,,,,,.当或时,或为平方数,此时该方程的根都是有理数.∴的值为:或.【点睛】本题考查了一元二次方程根的判别式,解题的关键是熟练掌握根的判别式,利用根的判别式求参数的值.22、详见解析.【分析】根据几何体分别画出从正面,上面和左面看到的图形即可.【详解】如图所示:主视图左视图俯视图【点睛】本题主要考查几何体的三视图,掌握三视图的画法是解题的关键.23、(1);(2)【分析】(1)化为一般形式后,用公式法求解即可.(2)用因式分解法提取公因式即可.【详解】(1)原方程可化为,得(2),所以.【点睛】本题考查的是一元二次方程的解法,能根据方程的特点灵活的选择解方程的方法是关键.24、(1)见解析;(2)△CPA∽△CAB,此时P(,);△BPA∽△BAC,此时P(,);(3)S(3,-2)是△GBD与△GBC公共的自相似点,见解析【分析】(1)利用:两边对应成比例且夹角相等,证明△APC∽△CAB即可;(2)分类讨论:△CPA∽△CAB和△BPA∽△BAC,分别求得P点的坐标;(3)先求得点D的坐标,说明点G(5,)、S(3,-2)在直线AC:上,证得△ABC△SGB,再证得△GBS∽△GCB,说明点S是△GBC的自相似点;又证得△DBG△DSB,说明点S是△GBD的自相似点.从而说明S(3,-2)是△GBD与△GBC公共的自相似点.【详解】(1)如图,∵A(1,0),B(3,0),C(0,1),P(2,0),∴AP=2-1=1,AC=,AB=3-1=2,∴,,∴=,∵∠PAC=∠CAB,∴△APC∽△CAB,故点P是△ABC的自相似点;(2)点P只能在BC上,①△CPA∽△CAB,如图,由(1)得:AC,AB,又,∵△CPA∽△CAB,∴,∴,∴,过点P作PD∥y轴交轴于D,∴,,∴,,∴,,P点

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论