安徽省合肥市一六八中学2025届九上数学期末联考试题含解析_第1页
安徽省合肥市一六八中学2025届九上数学期末联考试题含解析_第2页
安徽省合肥市一六八中学2025届九上数学期末联考试题含解析_第3页
安徽省合肥市一六八中学2025届九上数学期末联考试题含解析_第4页
安徽省合肥市一六八中学2025届九上数学期末联考试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省合肥市一六八中学2025届九上数学期末联考试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图1,点P从△ABC的顶点A出发,沿A﹣B﹣C匀速运动,到点C停止运动.点P运动时,线段AP的长度y与运动时间x的函数关系如图2所示,其中D为曲线部分的最低点,则△ABC的面积是()A.10 B.12 C.20 D.242.如图,在中,,将绕点逆时针旋转得到,其中点与点是对应点,且点在同一条直线上;则的长为()A. B. C. D.3.在△ABC中,∠C90°.若AB3,BC1,则的值为()A. B. C. D.4.如图,在△ABC中,∠A=75°,AB=6,AC=8,将△ABC沿图中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()A. B. C. D.5.如图,是正方形与正六边形的外接圆.则正方形与正六边形的周长之比为()A. B. C. D.6.如图,在半径为1的⊙O中,直径AB把⊙O分成上、下两个半圆,点C是上半圆上一个动点(C与点A、B不重合),过点C作弦CD⊥AB,垂足为E,∠OCD的平分线交⊙O于点P,设CE=x,AP=y,下列图象中,最能刻画y与x的函数关系的图象是()A. B.C. D.7.如图,小明想利用太阳光测量楼高,发现对面墙上有这栋楼的影子,小明边移动边观察,发现站在点处时,可以使自己落在墙上的影子与这栋楼落在墙上的影子重合且高度恰好相同.此时测得墙上影子高(点在同一条直线上).已知小明身高是,则楼高为()A. B. C. D.8.如图,在正方形ABCD中,AB=5,点M在CD的边上,且DM=2,△AEM与△ADM关于AM所在的直线对称,将△ADM按顺时针方向绕点A旋转90°得到△ABF,连接EF,则线段EF的长为()A. B. C. D.9.商场举行摸奖促销活动,对于“抽到一等奖的概率为0.01”.下列说法正确的是()A.抽101次也可能没有抽到一等奖B.抽100次奖必有一次抽到一等奖C.抽一次不可能抽到一等奖D.抽了99次如果没有抽到一等奖,那么再抽一次肯定抽到一等奖10.如图,在△ABC中,AB=5,AC=3,BC=4,将△ABC绕A逆时针方向旋转40°得到△ADE,点B经过的路径为弧BD,是图中阴影部分的面积为()A.π﹣6 B.π C.π﹣3 D.+π11.下列方程是一元二次方程的是()A. B.x2=0 C.x2-2y=1 D.12.如图,△ABC中,∠A=30°,点O是边AB上一点,以点O为圆心,以OB为半径作圆,⊙O恰好与AC相切于点D,连接BD.若BD平分∠ABC,AD=2,则线段CD的长是()A.2 B. C. D.二、填空题(每题4分,共24分)13.如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A、B、C、D分别是“果圆”与坐标轴的交点,抛物线的解析式为y=x2﹣6x﹣16,AB为半圆的直径,则这个“果圆”被y轴截得的线段CD的长为_____.14.如图,在□ABCD中,AC与BD交于点M,点F在AD上,AF=6cm,BF=12cm,∠FBM=∠CBM,点E是BC的中点,若点P以1cm/秒的速度从点A出发,沿AD向点F运动;点Q同时以2cm/秒的速度从点C出发,沿CB向点B运动.点P运动到F点时停止运动,点Q也同时停止运动.当点P运动_____秒时,以点P、Q、E、F为顶点的四边形是平行四边形.15.已知,且,则的值为__________.16.若一个圆锥的主视图是腰长为5,底边长为6的等腰三角形,则该圆锥的侧面积是____________.17.已知非负数a、b、c满足a+b=2,,,则d的取值范围为____.18.在△ABC中,∠C=90°,AC=,∠CAB的平分线交BC于D,且,那么tan∠BAC=_________.三、解答题(共78分)19.(8分)某市“艺术节”期间,小明、小亮都想去观看茶艺表演,但是只有一张茶艺表演门票,他们决定采用抽卡片的办法确定谁去.规则如下:将正面分别标有数字1、2、3、4的四张卡片(除数字外其余都相同)洗匀后,背面朝上放置在桌面上,随机抽出一张记下数字后放回;重新洗匀后背面朝上放置在桌面上,再随机抽出一张记下数字.如果两个数字之和为奇数,则小明去;如果两个数字之和为偶数,则小亮去.(1)请用列表或画树状图的方法表示抽出的两张卡片上的数字之和的所有可能出现的结果;(2)你认为这个规则公平吗?请说明理由.20.(8分)如图,一天,我国一渔政船航行到A处时,发现正东方向的我领海区域B处有一可疑渔船,正在以12海里∕小时的速度向西北方向航行,我渔政船立即沿北偏东60º方向航行,1.5小时后,在我领海区域的C处截获可疑渔船.问我渔政船的航行路程是多少海里?(结果保留根号)21.(8分)如图1,抛物线与x轴交于A、B两点(点A在x轴的负半轴),与y轴交于点C.抛物线的对称轴交抛物线于点D,交x轴于点E,点P是线段DE上一动点(点P不与DE两端点重合),连接PC、PO.(1)求抛物线的解析式和对称轴;(1)求∠DAO的度数和△PCO的面积;(3)在图1中,连接PA,点Q是PA的中点.过点P作PF⊥AD于点F,连接QE、QF、EF得到图1.试探究:是否存在点P,使得,若存在,请求点P的坐标;若不存在,请说明理由.22.(10分)用“☆”定义一种新运算:对于任意有理数a和b,规定a☆b=ab2+2ab+a.如:1☆3=1×32+2×1×3+1=16.(1)求(-2)☆3的值;(2)若=8,求a的值.23.(10分)如图,在Rt△ABC中,∠ACB=90°,∠BAC=30°,点O是边AC的中点.(1)在图1中,将△ABC绕点O逆时针旋转n°得到△A1B1C1,使边A1B1经过点C.求n的值.(2)将图1向右平移到图2位置,在图2中,连结AA1、AC1、CC1.求证:四边形AA1CC1是矩形;(3)在图3中,将△ABC绕点O顺时针旋转m°得到△A2B2C2,使边A2B2经过点A,连结AC2、A2C、CC2.①请你直接写出m的值和四边形AA2CC2的形状;②若AB=,请直接写出AA2的长.24.(10分)某射击队教练为了了解队员训练情况,从队员中选取甲、乙两名队员进行射击测试,相同条件下各射靶5次,成绩统计如下:命中环数678910甲命中相应环数的次数01310乙命中相应环数的次数20021(1)根据上述信息可知:甲命中环数的中位数是_____环,乙命中环数的众数是______环;

(2)试通过计算说明甲、乙两人的成绩谁比较稳定?

(3)如果乙再射击1次,命中8环,那么乙射击成绩的方差会变小.(填“变大”、“变小”或“不变”)25.(12分)如图,在平行四边形ABCD中,∠ABC的平分线BF分别与AC、AD交于点E、F.(1)求证:AB=AF;(2)当AB=3,BC=4时,求的值.26.小明、小林是景山中学九年级的同班同学,在六月份举行的招生考试中,他俩都被亭湖高级中学录取,并将被编入A、B、C三个班,他俩希望编班时分在不同班.(1)请你用画树状图法或列举法,列出所有可能的结果;(2)求两人不在同班的概率.

参考答案一、选择题(每题4分,共48分)1、B【解析】过点A作AM⊥BC于点M,由题意可知当点P运动到点M时,AP最小,此时长为4,观察图象可知AB=AC=5,∴BM==3,∴BC=2BM=6,∴S△ABC==12,故选B.【点睛】本题考查了动点问题的函数图象,根据已知和图象能确定出AB、AC的长,以及点P运动到与BC垂直时最短是解题的关键.2、A【分析】根据旋转的性质说明△ACC′是等腰直角三角形,且∠CAC′=90°,理由勾股定理求出CC′值,最后利用B′C=CC′-C′B′即可.【详解】解:根据旋转的性质可知AC=AC′,∠ACB=∠AC′B′=45°,BC=B′C′=1,∴△ACC′是等腰直角三角形,且∠CAC′=90°,∴CC′==4,∴B′C=4-1=1.故选:A.【点睛】本题主要考查了旋转的性质、勾股定理,在解决旋转问题时,要借助旋转的性质找到旋转角和旋转后对应的量.3、A【解析】∵在△ABC中,∠C=90°,AB=3,BC=1,∴sinA=.故选A.4、D【分析】根据相似三角形的判定定理对各选项进行逐一判定即可.【详解】A、根据平行线截得的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;B、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;C、两三角形对应边成比例且夹角相等,故两三角形相似,故本选项错误.D、两三角形的对应边不成比例,故两三角形不相似,故本选项正确;故选:D.【点睛】本题考查了相似三角形的判定,熟练掌握相似三角形的判定定理是解题的关键.5、A【解析】计算出在半径为R的圆中,内接正方形和内接正六边形的边长即可求出周长之间的关系;【详解】设此圆的半径为R,

则它的内接正方形的边长为,

它的内接正六边形的边长为R,

内接正方形和外切正六边形的边长比为R:R=:1.正方形与正六边形的周长之比=:6=

故答案选:A;【点睛】考查了正多边形和圆,解决圆的相关问题一定要结合图形,掌握基本的图形变换.找出内接正方形与内接正六边形的边长关系,是解决问题的关键.6、A【分析】连接OP,根据条件可判断出PO⊥AB,即AP是定值,与x的大小无关,所以是平行于x轴的线段.要注意CE的长度是小于1而大于0的.【详解】连接OP,∵OC=OP,∴∠OCP=∠OPC.∵∠OCP=∠DCP,CD⊥AB,∴∠OPC=∠DCP.∴OP∥CD.∴PO⊥AB.∵OA=OP=1,∴AP=y=(0<x<1).故选A.【点睛】解决有关动点问题的函数图象类习题时,关键是要根据条件找到所给的两个变量之间的函数关系,尤其是在几何问题中,更要注意基本性质的掌握和灵活运用.7、B【分析】过点C作CN⊥AB,可得四边形CDME、ACDN是矩形,即可证明,从而得出AN,进而求得AB的长.【详解】过点C作CN⊥AB,垂足为N,交EF于M点,

∴四边形CDEM、BDCN是矩形,

∴,

∴,依题意知,EF∥AB,

∴,

∴,即:,

∴AN=20,

(米),

答:楼高为21.2米.

故选:B.【点睛】本题主要考查了相似三角形的应用,把实际问题抽象到相似三角形中,利用相似三角形的相似比,列出方程,通过解方程求解即可,体现了转化的思想.8、A【分析】连接BM.先判定△FAE≌△MAB(SAS),即可得到EF=BM.再根据BC=CD=AB=1,CM=2,利用勾股定理即可得到,Rt△BCM中,BM=,进而得出EF的长.【详解】解:如图,连接BM.∵△AEM与△ADM关于AM所在的直线对称,∴AE=AD,∠MAD=∠MAE.∵△ADM按照顺时针方向绕点A旋转90°得到△ABF,∴AF=AM,∠FAB=∠MAD.∴∠FAB=∠MAE∴∠FAB+∠BAE=∠BAE+∠MAE.∴∠FAE=∠MAB.∴△FAE≌△MAB(SAS).∴EF=BM.∵四边形ABCD是正方形,∴BC=CD=AB=1.∵DM=2,∴CM=2.∴在Rt△BCM中,BM=,∴EF=,故选:A.【点睛】本题考查正方形的性质、三角形的判定和性质,关键在于做好辅助线,熟记性质.9、A【分析】根据概率是频率(多个)的波动稳定值,是对事件发生可能性大小的量的表现进行解答即可.【详解】解:根据概率的意义可得“抽到一等奖的概率为为0.01”就是说抽100次可能抽到一等奖,也可能没有抽到一等奖,抽一次也可能抽到一等奖,抽101次也可能没有抽到一等奖.故选:A.【点睛】本题考查概率的意义,概率是对事件发生可能性大小的量的表现.10、B【解析】根据AB=5,AC=3,BC=4和勾股定理的逆定理判断三角形的形状,根据旋转的性质得到△AED的面积=△ABC的面积,得到阴影部分的面积=扇形ADB的面积,根据扇形面积公式计算即可.【详解】解:∵AB=5,AC=3,BC=4,∴△ABC为直角三角形,由题意得,△AED的面积=△ABC的面积,由图形可知,阴影部分的面积=△AED的面积+扇形ADB的面积﹣△ABC的面积,∴阴影部分的面积=扇形ADB的面积=,故选B.【点睛】考查的是扇形面积的计算、旋转的性质和勾股定理的逆定理,根据图形得到阴影部分的面积=扇形ADB的面积是解题的关键.11、B【解析】利用一元二次方程的定义:只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程,可求解.【详解】解:A:,化简后是:,不符合一元二次方程的定义,所以不是一元二次方程;

B:x2=0,是一元二次方程;

C:x2-2y=1含有两个未知数,不符合一元二次方程的定义,所以不是一元二次方程;

D:,分母含有未知数,是一元一次方程,所以不是一元二次方程;

故选:B.【点睛】本题考查了一元二次方程的定义,判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.12、B【分析】连接OD,得Rt△OAD,由∠A=30°,AD=2,可求出OD、AO的长;由BD平分∠ABC,OB=OD可得OD与BC间的位置关系,根据平行线分线段成比例定理,得结论.【详解】连接OD∵OD是⊙O的半径,AC是⊙O的切线,点D是切点,∴OD⊥AC在Rt△AOD中,∵∠A=30°,AD=2,∴OD=OB=2,AO=4,∴∠ODB=∠OBD,又∵BD平分∠ABC,∴∠OBD=∠CBD,∴∠ODB=∠CBD,∴OD∥CB,∴,即,∴CD=.故选B.【点睛】本题考查了圆的切线的性质、含30°角的直角三角形的性质及平行线分线段成比例定理,解决本题亦可说明∠C=90°,利用∠A=30°,AB=6,先得AC的长,再求CD.遇切点连圆心得直角,是通常添加的辅助线.二、填空题(每题4分,共24分)13、1【解析】抛物线的解析式为y=x2-6x-16,可以求出AB=10;在Rt△COM中可以求出CO=4;则:CD=CO+OD=4+16=1.【详解】抛物线的解析式为y=x2-6x-16,

则D(0,-16)

令y=0,解得:x=-2或8,

函数的对称轴x=-=3,即M(3,0),

则A(-2,0)、B(8,0),则AB=10,

圆的半径为AB=5,

在Rt△COM中,

OM=5,OM=3,则:CO=4,

则:CD=CO+OD=4+16=1.故答案是:1.【点睛】考查的是抛物线与x轴的交点,涉及到圆的垂径定理.14、3或1【分析】由四边形ABCD是平行四边形得出:AD∥BC,AD=BC,∠ADB=∠CBD,又由∠FBM=∠CBM,即可证得FB=FD,求出AD的长,得出CE的长,设当点P运动t秒时,点P、Q、E、F为顶点的四边形是平行四边形,根据题意列出方程并解方程即可得出结果.【详解】解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠ADB=∠CBD,∵∠FBM=∠CBM,∴∠FBD=∠FDB,∴FB=FD=12cm,∵AF=6cm,∴AD=18cm,∵点E是BC的中点,∴CE=BC=AD=9cm,要使点P、Q、E、F为顶点的四边形是平行四边形,则PF=EQ即可,设当点P运动t秒时,点P、Q、E、F为顶点的四边形是平行四边形,根据题意得:6-t=9-2t或6-t=2t-9,解得:t=3或t=1.故答案为3或1.【点睛】本题考查了平行四边形的判定与性质、等腰三角形的判定与性质以及一元一次方程的应用等知识.注意掌握分类讨论思想的应用是解此题的关键.15、1【解析】分析:直接利用已知比例式假设出a,b,c的值,进而利用a+b-2c=6,得出答案.详解:∵,∴设a=6x,b=5x,c=4x,∵a+b-2c=6,∴6x+5x-8x=6,解得:x=2,故a=1.故答案为1.点睛:此题主要考查了比例的性质,正确表示出各数是解题关键.16、15π.【分析】根据圆锥的主视图得到圆锥的底面圆的半径为3,母线长为5,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.【详解】解:根据题意得圆锥的底面圆的半径为3,母线长为5,所以这个圆锥的侧面积=×5×2π×3=15π.【点睛】本题考查圆锥侧面积的计算,掌握公式,准确计算是本题的解题关键.17、5≤d≤1.【分析】用a表示出b、c并求出a的取值范围,再代入d整理成关于a的函数形式,然后根据二次函数的增减性求出答案即可.【详解】∵a+b=2,c-a=3,∴b=2-a,c=3+a,∵b,c都是非负数,∴,解不等式①得,a≤2,解不等式②得,a≥-3,∴-3≤a≤2,又∵a是非负数,∴0≤a≤2,∵d-a2-b-c=0∴d=a2+b+c=a2+(2-a)+3+a,=a2+5,∴对称轴为直线a=0,∴a=0时,最小值=5,a=2时,最大值=22+5=1,∴5≤d≤1.故答案为:5≤d≤1.【点睛】本题考查了二次函数的最值问题,用a表示出b、c并求出a的取值范围是解题的关键,难点在于整理出d关于a的函数关系式.18、【分析】根据勾股定理求出DC,推出∠DAC=30°,求出∠BAC的度数,即可得出tan∠BAC的值.【详解】在△DAC中,∠C=90°,由勾股定理得:DC,∴DCAD,∴∠DAC=30°,∴∠BAC=2×30°=60°,∴tan∠BAC=tan60°.故答案为:.【点睛】本题考查了含30度角的直角三角形,锐角三角函数的定义,能求出∠DAC的度数是解答本题的关键.三、解答题(共78分)19、(1)见解析(2)公平,理由见解析【分析】(1)用列表法将所有等可能的结果一一列举出来即可;(2)求得两人获胜的概率,若相等则公平,否则不公平.【详解】解:(1)根据题意列表得:(2)由列表得:共16种情况,其中奇数有8种,偶数有8种,∴和为偶数和和为奇数的概率均为,∴这个游戏公平.点评:本题考查了游戏公平性及列表与列树形图的知识,难度不大,是经常出现的一个知识点.20、我渔政船的航行路程是海里.【分析】过C点作AB的垂线,垂足为D,构建Rt△ACD,Rt△BCD,解这两个直角三角形即可.【详解】解:如图:作CD⊥AB于点D,∵在Rt△BCD中,BC=12×1.5=18海里,∠CBD=45°,∴CD=BC•sin45°=(海里).∴在Rt△ACD中,AC=CD÷sin30°=(海里).答:我渔政船的航行路程是海里.点睛:考查了解直角三角形的应用(方向角问题),锐角三角函数定义,特殊角的三角函数值.21、(1);;(1)45°;;(3)存在,【分析】(1)把C点坐标代入解出解析式,再根据对称轴即可解出.(1)把A、D、E、C点坐标求出后,因为AE=DE,且DE⊥AE,所以∠DAO=,P点y轴的距离等于OE,即可算出△POC的面积.(3)设出PE=m,根据勾股定理用m表示出PA,根据直角三角形斜边中线是斜边的一半可以证明AQ=FQ=QE=QP,所以△AQF和△AQE都是等腰三角形,又因为∠DAO=,再根据角的关系可以证明△FEQ是等腰直角三角形,再根据,解出m即可.可以通过圆的性质,来判断△FEQ是等腰直角三角形,再根据建立等式算出m即可.【详解】解:(1)将C代入求得a=,∴抛物线的解析式为;由可求抛物线的对称轴为直线(1)由抛物线可求一些点的坐标:∴AE=DE=3,又DE⊥AE∴△ADE是等腰直角三角形∴∠DAO=45°作PM⊥y轴于M,在对称轴上的点P的横坐标为-1,∴PM=1,又OP=∴△OPC的面积为(3)解:存在点满足题目条件.解法一:设点P的纵坐标为m(0<m<3),则PE=m,∵点Q是PA的中点,∴QE、QF分别是Rt△PAE、Rt△PAF的公共斜边PA上的中线∴QE=QF=AQ=PQ=∵QE=AQ,QF=AQ∴∠EAQ=∠AEQ,∠FAQ=∠AFQ∴∠EQP=1∠EAQ,∠FQP=1∠FAQ∴∠EQF=1(∠EAQ+∠FAQ)=1∠DAO=90°又∴QE=QF∴△EFQ是等腰直角三角形∴△EFQ的面积为由得解得∵0<m<3∴∴在抛物线对称轴上的点P的坐标为解法二:设点P的纵坐标为m(0<m<3),则PE=m,∵点Q是PA的中点,∴QE、QF分别是Rt△PAE、Rt△PAF的公共斜边PA上的中线∴QE=QF=AQ=PQ=∴四边形PEAF内接于半径为QE的⊙Q,∴∠EQF=1∠DAO=90°又∴QE=QF∴△EFQ是等腰直角三角形∴△EFQ的面积为由得解得∵0<m<3∴∴在抛物线对称轴上的点P的坐标为【点睛】本题考查了用待定系数法求一元二次函数解析式,对称轴,直角三角形的性质,及一元二次函数与三角形综合点存在性的问题,熟练运用相关知识点是解本题的关键.22、(1)-32;(2)a=1.【解析】分析:(1)原式利用题中的新定义化简,计算即可得到结果;(2)已知等式利用题中的新定义化简,即可求出a的值.详解:(1)(-2)☆3=-2×32+2×(-2)×3+(-2)=-32;(2)==8a+8=8,解得:a=1.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.23、(1)n=60°;(2)见解析;(3)①m=120°,四边形AA2CC2是矩形;②AA2=3.【分析】(1)利用等腰三角形的性质求出∠COC1即可.(2)根据对角线相等的平行四边形是矩形证明即可.(3)①求出∠COC2即可,根据矩形的判定证明即可解决问题.②解直角三角形求出A2C2,再求出AA2即可.【详解】(1)解:如图1中,由旋转可知:△A1B1C1≌△ABC,∴∠A1=∠A=30°,∵OC=OA,OA1=OA,∴OC=OA1,∴∠OCA1=∠A1=30°,∴∠COC1=∠A1+OCA1=60°,∴n=60°.(2)证明:如图2中,∵OC=OA,OA1=OC1,∴四边形AA1CC1是平行四边形,∵OA=OA1,OC=OC1,∴AC=A1C1,∴四边形AA1CC1是矩形.(3)如图3中,①∵OA=OA2,∴∠OAA2=∠OA2A=30°,∴∠COC2=∠AOA2=180°﹣30°﹣30°=120°,∴m=120°,∵OC=OA,OA2=OC2,∴四边形AA2CC2是平行四边形,∵OA=OA2,OC=OC2,∴AC=A2C2,∴四边形AA2CC2是矩形.②∵AC=A2C2=AB•cos30°=4×=6,∴AA2=A2C2•cos30°=6×=3.【点睛】本题属于四边形综合题,考查了旋转变换,平行四边形的判定和性质,矩形的判定和性质,解直角三角形等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.24、(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论