




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省厦门市集美区杏东中学2025届九上数学期末综合测试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图2,四边形ABCD的对角线AC、BD互相垂直,则下列条件能判定四边形ABCD为菱形的是()A.BA=BC B.AC、BD互相平分 C.AC=BD D.AB∥CD2.如图,⊙O是△ABC的外接圆,连接OC、OB,∠BOC=100°,则∠A的度数为()A.30° B.40° C.50° D.60°3.将化成的形式为()A. B.C. D.4.校园内有一个由两个全等的六边形(边长为)围成的花坛,现将这个花坛在原有的基础上扩建成如图所示的一个菱形区域,并在新扩建的部分种上草坪,则扩建后菱形区域的周长为()A. B. C. D.5.有5个完全相同的卡片,正面分别写有1,2,3,4,5这5个数字,现把卡片背面朝上,从中随机抽取一个卡片,其数字是奇数的概率为()A. B. C. D.6.在同一直角坐标系中,二次函数与一次函数的大致图象可能()A. B.C. D.7.如图,中,中线AD,BE相交于点F,,交于AD于点G,下列说法①;②;③与面积相等;④与四边形DCEF面积相等.结论正确的是()A.①③④ B.②③④ C.①②③ D.①②④8.下列二次根式中,与是同类二次根式的是A. B. C. D.9.反比例函数的图象分布的象限是()A.第一、三象限 B.第二、四象限 C.第一象限 D.第二象限10.已知M(a,b)是平面直角坐标系xOy中的点,其中a是从l,2,3,4三个数中任取的一个数,b是从l,2,3,4,5五个数中任取的一个数.定义“点M(a,b)在直线x+y=n上”为事件Qn(2≤n≤9,n为整数),则当Qn的概率最大时,n的所有可能的值为()A.5 B.4或5 C.5或6 D.6或7二、填空题(每小题3分,共24分)11.已知,相似比为,且的面积为,则的面积为__________.12.如图,在平面直角坐标系中,正方形OABC的两边OA、OC分别在x轴、y轴上,点D(4,1)在AB边上,把△CDB绕点C旋转90°,点D的对应点为点D′,则OD′的长为_________.13.已知:如图,△ABC的面积为16,点D、E分别是边AB、AC的中点,则△ADE的面积为______.14.一枚质地均匀的骰子,六个面分别标有数字1,2,3,4,5,6,抛掷一次,恰好出现“正面朝上的数字是5”的概率是___________.15.如图所示的网格是正方形网格,△和△的顶点都是网格线交点,那么∠∠_________°.16.如图,分别以正五边形ABCDE的顶点A,D为圆心,以AB长为半径画,若,则阴影部分图形的周长为______结果保留.17.若,则__________.18.已知函数(为常数),若从中任取值,则得到的函数是具有性质“随增加而减小”的一次函数的概率为___________.三、解答题(共66分)19.(10分)甲、乙两名同学玩一个游戏:在一个不透明的口袋中装有标号分别为1,2,3,4的四个小球(除标号外无其它差异).从口袋中随机摸出一个小球,记下标号后放回口袋中,充分摇匀后,再从口袋中随机摸出一个小球,记下该小球的标号,两次记下的标号分别用x、y表示.若x+y为奇数,则甲获胜;若x+y为偶数,则乙获胜.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,求(x,y)所有可能出现的结果总数;(2)你认为这个游戏对双方公平吗?请说明理由.20.(6分)如图,△ABD是⊙O的内接三角形,E是弦BD的中点,点C是⊙O外一点且∠DBC=∠A,连接OE延长与圆相交于点F,与BC相交于点C.(1)求证:BC是⊙O的切线;(2)若⊙O的半径为6,BC=8,求弦BD的长.21.(6分)如图,BD是平行四边形ABCD的对角线,DE⊥AB于点E,过点E的直线交BC于点G,且BG=CG.(1)求证:GD=EG.(2)若BD⊥EG垂足为O,BO=2,DO=4,画出图形并求出四边形ABCD的面积.(3)在(2)的条件下,以O为旋转中心顺时针旋转△GDO,得到△G′D'O,点G′落在BC上时,请直接写出G′E的长.22.(8分)阅读下面内容,并按要求解决问题:问题:“在平面内,已知分别有个点,个点,个点,5个点,…,n个点,其中任意三个点都不在同一条直线上.经过每两点画一条直线,它们可以分别画多少条直线?”探究:为了解决这个问题,希望小组的同学们设计了如下表格进行探究:(为了方便研究问题,图中每条线段表示过线段两端点的一条直线)请解答下列问题:(1)请帮助希望小组归纳,并直接写出结论:当平面内有个点时,直线条数为;(2)若某同学按照本题中的方法,共画了条直线,求该平面内有多少个已知点.23.(8分)如图,△ABC中(1)请你利用无刻度的直尺和圆规在平面内画出满足PB2+PC2=BC2的所有点P构成的图形,并在所作图形上用尺规确定到边AC、BC距离相等的点P.(作图必须保留作图痕迹)(2)在(1)的条件下,连接BP,若BC=15,AC=14,AB=13,求BP的长.24.(8分)求证:对角线相等的平行四边形是矩形.(要求:画出图形,写出已知和求证,并给予证明)25.(10分)(1)计算:;(2)解方程.26.(10分)某活动小组对函数的图象性质进行探究,请你也来参与(1)自变量的取值范围是______;(2)表中列出了、的一些对应值,则______;(3)依据表中数据画出了函数图象的一部分,请你把函数图象补充完整;01233003(4)就图象说明,当方程共有4个实数根时,的取值范围是______.
参考答案一、选择题(每小题3分,共30分)1、B【详解】解:对角线互相垂直平分的四边形为菱形.已知对角线AC、BD互相垂直,则需添加条件:AC、BD互相平分故选:B2、C【分析】直接根据圆周角定理即可得出结论.【详解】∵⊙O是△ABC的外接圆,∠BOC=100°,∴∠A=∠BOC==50°.故选:C.【点睛】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.3、C【分析】本小题先将二次项的系数提出后再将括号里运用配方法配成完全平方式即可.【详解】由得:故选C【点睛】本题考查的知识点是配方法,掌握配方的方法及防止漏乘是关键.4、C【分析】根据题意和正六边形的性质得出△BMG是等边三角形,再根据正六边形的边长得出BG=GM=3.5m,同理可证出AF=EF=3.5m,再根据AB=BG+GF+AF,求出AB,从而得出扩建后菱形区域的周长.【详解】解:如图,∵花坛是由两个相同的正六边形围成,∴∠FGM=∠GMN=120°,GM=GF=EF,∴∠BMG=∠BGM=60°,∴△BMG是等边三角形,∴BG=GM=3.5(m),同理可证:AF=EF=3.5(m)∴AB=BG+GF+AF=3.5×3=10.5(m),∴扩建后菱形区域的周长为10.5×4=42(m),故选:C.【点睛】此题考查了菱形的性质,用到的知识点是等边三角形的判定与性质、菱形的性质和正六边形的性质,关键是根据题意作出辅助线,找出等边三角形.5、D【分析】让正面的数字是奇数的情况数除以总情况数即为所求的概率.【详解】解:∵从写有数字1,2,3,4,5这5张卡片中抽取一张,其中正面数字是奇数的有1、3、5这3种结果,∴正面的数字是奇数的概率为;故选D.【点睛】此题主要考查了概率公式的应用,明确概率的意义是解答的关键,用到的知识点为:概率等于所求情况数与总情况数之比.6、C【分析】先分别根据二次函数和一次函数的图象得出a、c的符号,再根据两个函数的图象与y轴的交点重合,为点逐项判断即可.【详解】A、由二次函数的图象可知,由一次函数的图象可知,两个函数图象得出的a、c的符号不一致,则此项不符题意B、由二次函数的图象可知,由一次函数的图象可知,两个函数图象得出的a、c的符号不一致,则此项不符题意C、由二次函数的图象可知,由一次函数的图象可知,两个函数图象得出的a、c的符号一致,且都经过点,则此项符合题意D、由二次函数的图象可知,由一次函数的图象可知,两个函数图象得出的a、c的符号一致,但与y轴的交点不是同一点,则此项不符题意故选:C.【点睛】本题考查了一次函数与二次函数的图象综合,熟练掌握一次函数与二次函数的图象特征是解题关键.7、D【分析】为BC,AC中点,可得由于可得;可证故①正确.②由于则可证,故②正确.设,可得可判断③错,④正确.【详解】解:①∵为BC,AC中点,;故①正确.②,故②正确.③④设,故③错,④正确.【点睛】本题考查了平行线段成比例,解题的关键是掌握平行线段成比例以及面积与比值的关系.8、C【分析】根据同类二次根式的定义即可判断.【详解】A.=,不符合题意;B.,不符合题意;C.=,符合题意;D.=,不符合题意;故选C.【点睛】此题主要考查同类二次根式的识别,解题的关键是熟知二次根式的性质进行化简.9、A【解析】先根据反比例函数的解析式判断出k的符号,再根据反比例函数的性质即可得出结论.【详解】解:∵反比例函数y=中,k=2>0,
∴反比例函数y=的图象分布在一、三象限.
故选:A.【点睛】本题考查的是反比例函数的性质,熟知反比例函数y=(k≠0)中,当k>0时,反比例函数图象的两个分支分别位于一三象限是解答此题的关键.10、C【解析】试题分析:列树状图为:∵a是从l,2,3,4四个数中任取的一个数,b是从l,2,3,4,5五个数中任取的一个数.又∵点M(a,b)在直线x+y=n上,2≤n≤9,n为整数,∴n=5或6的概率是,n=4的概率是,∴当Qn的概率最大时是n=5或6的概率是最大.故选C.考点:1、列表法与树状图法;2、一次函数图象上点的坐标特征二、填空题(每小题3分,共24分)11、【分析】根据相似三角形的性质,即可求解.【详解】∵,相似比为,∴与,的面积比等于4:1,∵的面积为,∴的面积为1.故答案是:1.【点睛】本题主要考查相似三角形的性质定理,掌握相似三角形的面积比等于相似比的平方,是解题的关键.12、3或【分析】由题意,可分为逆时针旋转和顺时针旋转进行分析,分别求出点OD′的长,即可得到答案.【详解】解:因为点D(4,1)在边AB上,
所以AB=BC=4,BD=4-1=3;
(1)若把△CDB顺时针旋转90°,
则点D′在x轴上,OD′=BD=3,
所以D′(3,0);∴;
(2)若把△CDB逆时针旋转90°,
则点D′到x轴的距离为8,到y轴的距离为3,
所以D′(3,8),∴;
故答案为:3或.【点睛】此题主要考查了坐标与图形变化——旋转,考查了分类讨论思想的应用,解答此题的关键是要注意分顺时针旋转和逆时针旋转两种情况.13、4【分析】根据三角形中位线的性质可得DE//BC,,即可证明△ADE∽△ABC,根据相似三角形的面积比等于相似比的平方即可得答案.【详解】∵点D、E分别是边AB、AC的中点,∴DE为△ABC的中位线,∴DE//BC,,∴△ADE∽△ABC,∴=,∵△ABC的面积为16,∴S△ADE=×16=4.故答案为:4【点睛】本题考查三角形中位线的性质及相似三角形的判定与性质,三角形的中位线平行于第三边,且等于第三边的一半;熟练掌握相似三角形的面积比等于相似比的平方是解题关键.14、【分析】“正面朝上的数字是5”的情况数除以总情况数6即为所求的概率.【详解】解:∵抛掷六个面上分别标有数字1,2,3,4,5,6的骰子共有6种结果,其中“正面朝上的数字是5”的只有1种,
∴“正面朝上的数字是5”的概率为,
故答案为:.【点睛】此题主要考查了概率公式的应用,概率等于所求情况数与总情况数之比.15、45【分析】先利用平行线的性质得出,然后通过勾股定理的逆定理得出为等腰直角三角形,从而可得出答案.【详解】如图,连接AD,∵∴∴∵∴∴∴故答案为45【点睛】本题主要考查平行线的性质及勾股定理的逆定理,掌握勾股定理的逆定理及平行线的性质是解题的关键.16、+1.【详解】解:∵五边形ABCDE为正五边形,AB=1,∴AB=BC=CD=DE=EA=1,∠A=∠D=108°,∴==•πAB=,∴C阴影=++BC=+1.故答案为+1.17、【分析】设=k,可得a=3k,b=4k,c=5k,代入所求代数式即可得答案.【详解】设=k,∴a=3k,b=4k,c=5k,∴=,故答案为:【点睛】本题考查了比例的性质,常用的比例性质有:内项之积等于外项之积;合比性质;分比性质;合分比性质;等比性质;熟练掌握比例的性质是解题关键.18、【分析】根据“随增加而减小”可知,解出k的取值范围,然后根据概率公式求解即可.【详解】由“随增加而减小”得,解得,∴具有性质“随增加而减小”的一次函数的概率为故答案为:.【点睛】本题考查了一次函数的增减性,以及概率的计算,熟练掌握一次函数增减性与系数的关系和概率公式是解题的关键.三、解答题(共66分)19、(1)见解析;(2)这个游戏对双方公平,理由见解析.【分析】(1)通过列表法即可得(x,y)所有可能出现的结果数;(2)根据(1)的结果,分别找出x+y为奇数、x+y为偶数的结果数,利用概率公式分别求解后进行比较即可.【详解】(1)列表如下:12341(1,1)(1,2)(1,3)(1,4)2(2,1)(2,2)(2,3)(2,4)3(3,1)(3,2)(3,3)(3,4)4(4,1)(4,2)(4,3)(4,4)由表格可知(x,y)所有可能出现的结果共有16种;(2)这个游戏对双方公平,理由如下:由列表法可知,在16种可能出现的结果中,它们出现的可能性相等,∵x+y为奇数的有8种情况,∴P(甲获胜)=,∵x+y为偶数的有8种情况,∴P(乙获胜)=,∴P(甲获胜)=P(乙获胜),∴这个游戏对双方公平.【点睛】本题考查了列表法或树状图法求概率,判断游戏的公平性,用到的知识点为:概率=所求情况数与总情况数之比.20、(1)详见解析;(2)BD=9.6.【解析】试题分析:(1)连接OB,由垂径定理可得BE=DE,OE⊥BD,,再由圆周角定理可得,从而得到∠OBE+∠DBC=90°,即,命题得证.(2)由勾股定理求出OC,再由△OBC的面积求出BE,即可得出弦BD的长.试题解析:(1)证明:如下图所示,连接OB.∵E是弦BD的中点,∴BE=DE,OE⊥BD,,∴∠BOE=∠A,∠OBE+∠BOE=90°.∵∠DBC=∠A,∴∠BOE=∠DBC,∴∠OBE+∠DBC=90°,∴∠OBC=90°,即BC⊥OB,∴BC是⊙O的切线.(2)解:∵OB=6,BC=8,BC⊥OB,∴,∵,∴,∴.点睛:本题主要考查圆中的计算问题,解题的关键在于清楚角度的转换方式和弦长的计算方法.21、(1)详见解析;(2)图详见解析,12;(3).【分析】(1)如图1,延长EG交DC的延长线于点H,由“AAS”可证△CGH≌△BGE,可得GE=GH,由直角三角形的性质可得DG=EG=GH;
(2)通过证明△DEO∽△DBO,可得,可求DE=,由平行线分线段成比例可求EG=,GO=EG-EO=,由勾股定理可求BG=CG=,可得DE=AD,即点A与点E重合,可画出图形,由面积公式可求解;
(3)如图3,过点O作OF⊥BC,由旋转的性质和等腰三角形的性质可得GF=G'F,由平行线分线段成比例可求GF的长,由勾股定理可求解.【详解】证明:(1)如图1,延长EG交DC的延长线于点H,∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,AB=CD,AB∥CD,∵AB∥CD,∴∠H=GEB,又∵BG=CG,∠BGE=∠CGH,∴△CGH≌△BGE(AAS),∴GE=GH,∵DE⊥AB,DC∥AB,∴DC⊥DE,∴DG=EG=GH;(2)如图1:∵DB⊥EG,∴∠DOE=∠DEB=90°,且∠EDB=∠EDO,∴△DEO∽△DBO,∴,∴DE×DE=4×(2+4)=24,∴DE=∴EO=,∵AB∥CD,∴,∴HO=2EO=,∴EH=,且EG=GH,∴EG=,GO=EG﹣EO=,∴GB=,∴BC==AD,∴AD=DE,∴点E与点A重合,如图2:∵S四边形ABCD=2S△ABD,∴S四边形ABCD=2××BD×AO=6×2=12;(3)如图3,过点O作OF⊥BC,∵旋转△GDO,得到△G′D'O,∴OG=OG',且OF⊥BC,∴GF=G'F,∵OF∥AB,∴,∴GF=BG=,∴GG'=2GF=,∴BG'=BG﹣GG'=,∵AB2=AO2+BO2=12,∵EG'=AG'=.【点睛】本题是四边形综合题,考查了平行四边形的性质,矩形的性质,旋转的性质,全等三角形的判定和性质,相似三角形的判定和性质等知识,添加恰当辅助线是本题的关键.22、(1);(2)8.【分析】(1)根据过两点的直线有1条,过不在同一直线上的三点的直线有3条,过任何三点都不在一条直线上四点的直线有6条,按此规律,由特殊到一般,总结出公式:;(2)将28代入公式求n即可.【详解】解:(1)当平面内有2个点时,可以画条直线;当平面内有3个点时,可以画条直线;当平面内有4个点时,可以画条直线;…当平面内有n(n≥2)个点时,可以画条直线;设该平面内有个已知点.由题意,得解得(舍)答:该平面内有个已知点【点睛】此题是探求规律题并考查解一元二次方程,读懂题意,找出规律是解题的关键,解题时候能够进行知识的迁移是一种重要的解题能力.23、(1)见解析;(2)BP=【分析】(1)根据PB2+PC2=BC2得出P点所构成的圆以BC为直径,根据垂直平分线画法画出O点,补全⊙O,再作∠ACB的角平分线与⊙O的交点即是P点.(2)设⊙O与AC的交点为H,AH=x,得到AH、BH,根据题意求出OP∥AC,即可得出OP⊥BH,BQ=BH,OQ=CH,求出PQ,根据勾股定理求出BP.【详解】(1)如图:(2)由(1)作图,设⊙O与AC的交点为H,连接BH,∴∠BHC=90°∵BC=15,AC=14,AB=13设AH=x∴HC=14-x∴解得:x=5∴AH=5∴BH=12.连接OP,由(1)作图知CP平分∠BCA∴∠PCA=∠BCP又∵OP=OC∴
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 物产管理室管理办法
- 神州车司机管理办法
- 浙江残疾车管理办法
- 河北省协议管理办法
- 省干部保健管理办法
- 鸡舍水质管理办法
- 物业区块化管理办法
- 灵石县财政管理办法
- 高校订餐管理办法
- 电厂操作票管理办法
- 剖宫产术的解剖
- 采掘电钳工题库全套及答案全案(高级)
- VDA6.3:2023 汽车核心工具自我评估测试题库真题 (含答案)
- ks-s3002sr2腔全自动清洗机规格书megpie
- 2022年泰顺县特殊教育岗位教师招聘考试笔试试题及答案解析
- GB/T 28955-2012道路车辆全流式机油滤清器滤芯尺寸
- GA/T 852.1-2009娱乐服务场所治安管理信息规范第1部分:娱乐服务场所分类代码
- 建设项目办理用地预审与选址意见书技术方案
- 历年托福词汇题汇总440题有答案
- 10kV中压开关柜知识培训课件
- 急性冠脉综合征抗栓治疗合并出血多学科专家共识
评论
0/150
提交评论