2025届广东省惠阳市马安中学数学九上期末经典模拟试题含解析_第1页
2025届广东省惠阳市马安中学数学九上期末经典模拟试题含解析_第2页
2025届广东省惠阳市马安中学数学九上期末经典模拟试题含解析_第3页
2025届广东省惠阳市马安中学数学九上期末经典模拟试题含解析_第4页
2025届广东省惠阳市马安中学数学九上期末经典模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届广东省惠阳市马安中学数学九上期末经典模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.在下列四个图案中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.2.已知,是一元二次方程的两个实数根,下列结论错误的是()A. B. C. D.3.如图,在□ABCD中,∠B=60°,AB=4,对角线AC⊥AB,则□ABCD的面积为A.6 B.12 C.12 D.164.如图,菱形OABC的顶点C的坐标为(3,4),顶点A在x轴的正半轴上.反比例函数(x>0)的图象经过顶点B,则k的值为A.12 B.20 C.24 D.325.已知关于轴对称点为,则点的坐标为()A. B. C. D.6.已知点E在半径为5的⊙O上运动,AB是⊙O的一条弦且AB=8,则使△ABE的面积为8的点E共有()个.A.1 B.2 C.3 D.47.如图,在正方形ABCD中,E为AB的中点,G,F分别为AD、BC边上的点,若AG=1,BF=2,∠GEF=90°,则GF的长为()A.2 B.3 C.4 D.58.服装店为了解某品牌外套销售情况,对各种码数销量进行统计店主最应关注的统计量是()A.平均数 B.中位数 C.方差 D.众数9.一个不透明的盒子中放入四张卡片,每张卡片上都写有一个数字,分别是﹣2,﹣1,0,1.卡片除数字不同外其它均相同,从中随机抽取两张卡片,抽取的两张卡片上数字之积为负数的概率是()A. B. C. D.10.如图,为⊙O的直径,弦于,则下面结论中不一定成立的是()A. B.C. D.11.如图,在△ABC中,D,E分别是AB和AC上的点,且DE∥BC,,DE=6,则BC的长为()A.8 B.9 C.10 D.1212.一个不透明的袋子装有除颜色外其余均相同的2个白球和个黑球.随机地从袋中摸出一个球记录下颜色,再放回袋中摇匀.大量重复试验后,发现摸出白球的频率稳定在1.2附近,则的值为()A.2 B.4 C.8 D.11二、填空题(每题4分,共24分)13.将抛物线y=﹣5x2+1向左平移1个单位长度,再向下平移2个单位长度,所得到的抛物线的函数关系式为_____________.14.化简:______.15.如图,从甲楼底部A处测得乙楼顶部C处的仰角是30°,从甲楼顶部B处测得乙楼底部D处的俯角是45°,已知甲楼的高AB是120m,则乙楼的高CD是_____m(结果保留根号)16.如图,若抛物线与直线交于,两点,则不等式的解集是______.17.从某玉米种子中抽取6批,在同一条件下进行发芽试验,有关数据如下:种子粒数100400800100020005000发芽种子粒数8529865279316044005发芽频率0.8500.7450.8150.7930.8020.801根据以上数据可以估计,该玉米种子发芽的概率约为___(精确到0.1).18.如图,在平面直角坐标系中,直线l的函数表达式为y=x,点O1的坐标为(1,0),以O1为圆心,O1O为半径画圆,交直线l于点P1,交x轴正半轴于点O2,以O2为圆心,O2O为半径画圆,交直线l于点P2,交x轴正半轴于点O3,以O3为圆心,O3O为半径画圆,交直线l于点P3,交x轴正半轴于点O4;…按此做法进行下去,其中的长为_____.三、解答题(共78分)19.(8分)如图,在平面直角坐标系中,将一个图形绕原点顺时针方向旋转称为一次“直角旋转,已知的三个顶点的坐标分别为,,,完成下列任务:(1)画出经过一次直角旋转后得到的;(2)若点是内部的任意一点,将连续做次“直角旋转”(为正整数),点的对应点的坐标为,则的最小值为;此时,与的位置关系为.(3)求出点旋转到点所经过的路径长.20.(8分)近年来某市大力发展绿色交通,构建公共、绿色交通体系,将“共享单车”陆续放置在人口流量较大的地方,琪琪同学随机调查了若干市民用“共享单车”的情况,将获得的数据分成四类,:经常使用;:偶尔使用;:了解但不使用;:不了解,并绘制了如下两个不完整的统计图.请根据以上信息,解答下列问题:(1)这次被调查的总人数是人,“:了解但不使用”的人数是人,“:不了解”所占扇形统计图的圆心角度数为.(2)某小区共有人,根据调查结果,估计使用过“共享单车”的大约有多少人?(3)目前“共享单车”有黄色、蓝色、绿色三种可选,某天小张和小李一起使用“共享单车”出行,求两人骑同一种颜色单车的概率.21.(8分)在平面直角坐标系xOy中,抛物线y=ax2+bx+c经过A(0,﹣4)和B(2,0)两点.(1)求c的值及a,b满足的关系式;(2)若抛物线在A和B两点间,y随x的增大而增大,求a的取值范围;(3)抛物线同时经过两个不同的点M(p,m),N(﹣2﹣p,n).①若m=n,求a的值;②若m=﹣2p﹣3,n=2p+1,点M在直线y=﹣2x﹣3上,请验证点N也在y=﹣2x﹣3上并求a的值.22.(10分)如图,⊙O的直径AB为10cm,弦BC=8cm,∠ACB的平分线交⊙O于点D.连接AD,BD.求四边形ABCD的面积.23.(10分)(1)计算:cos60°﹣tan30°+tan60°﹣2sin245°;(2)解方程:2(x﹣3)2=x(x﹣3).24.(10分)在学习概率的课堂上,老师提出的问题:只有一张电影票,小丽和小芳想通过抽取扑克牌的游戏来决定谁去看电影,请你设计一个对小丽和小芳都公平的方案.甲同学的方案:将红桃2、3、4、5四张牌背面向上,小丽先抽一张,小芳从剩下的三张牌中抽一张,若两张牌上的数字之和是奇数,则小丽看电影,否则小芳看电影.(1)甲同学的方案公平吗?请用列表或画树状图的方法说明;(2)乙同学将甲同学的方案修改为只用2、3、5、7四张牌,抽取方式及规则不变,乙的方案公平吗?并说明理由.25.(12分)如图,已知AB为⊙O的直径,AD,BD是⊙O的弦,BC是⊙O的切线,切点为B,OC∥AD,BA,CD的延长线相交于点E.(1)求证:DC是⊙O的切线;(2)若AE=1,ED=3,求⊙O的半径.26.如图,△ABC是一块锐角三角形的材料,边BC=120mm,高AD=80mm,要把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB、AC上,这个正方形零件的边长是多少mm.

参考答案一、选择题(每题4分,共48分)1、C【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A.此图案既不是轴对称图形,也不是中心对称图形;

B.此图案既不是轴对称图形,也不是中心对称图形;

C.此图案既是轴对称图形,又是中心对称图形;

D.此图案仅是轴对称图形;

故选:C.【点睛】本题考查了中心对称图形与轴对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形的关键是要寻找对称中心,旋转180度后两部分重合.2、C【分析】由题意根据解一元二次方程的概念和根与系数的关系对选项逐次判断即可.【详解】解:∵△=22-4×1×0=4>0,∴,选项A不符合题意;∵是一元二次方程的实数根,∴,选项B不符合题意;∵,是一元二次方程的两个实数根,∴,,选项D不符合题意,选项C符合题意.故选:C.【点睛】本题考查解一元二次方程和根与系数的关系,能熟记根与系数的关系的内容是解此题的关键.3、D【分析】利用三角函数的定义求出AC,再求出△ABC的面积,故可得到□ABCD的面积.【详解】∵∠B=60°,AB=4,AC⊥AB,∴AC=ABtan60°=4,∴S△ABC=AB×AC=×4×4=8,∴□ABCD的面积=2S△ABC=16故选D.【点睛】此题主要考查三角函数的应用,解题的关键是熟知正切的定义及平行四边形的性质.4、D【详解】如图,过点C作CD⊥x轴于点D,∵点C的坐标为(3,4),∴OD=3,CD=4.∴根据勾股定理,得:OC=5.∵四边形OABC是菱形,∴点B的坐标为(8,4).∵点B在反比例函数(x>0)的图象上,∴.故选D.5、D【分析】利用关于x轴对称的点坐标的特点即可解答.【详解】解:∵关于轴对称点为∴的坐标为(-3,-2)故答案为D.【点睛】本题考查了关于x轴对称的点坐标的特点,即识记关于x轴对称的点坐标的特点是横坐标不变,纵坐标变为相反数.6、C【分析】根据△ABC的面积可将高求出,即⊙O上的点到AB的距离为高长的点都符合题意.【详解】过圆心向弦AB作垂线,再连接半径.设△ABE的高为h,由可求.由圆的对称性可知,有两个点符合要求;又弦心距=.∵3+2=5,故将弦心距AB延长与⊙O相交,交点也符合要求,故符合要求的点有3个.故选C.考点:(1)垂径定理;(2)勾股定理.7、B【解析】∵四边形ABCD是正方形,∴∠A=∠B=90°,∴∠AGE+∠AEG=90°,∠BFE+∠FEB=90°,∵∠GEF=90°,∴∠GEA+∠FEB=90°,∴∠AGE=∠FEB,∠AEG=∠EFB,∴△AEG∽△BFE,∴,又∵AE=BE,∴AE2=AG•BF=2,∴AE=(舍负),∴GF2=GE2+EF2=AG2+AE2+BE2+BF2=1+2+2+4=9,∴GF的长为3,故选B.【点睛】本题考查了相似三角形的性质的应用,利用勾股定理即可得解,解题的关键是证明△AEG∽△BFE.8、D【分析】根据题意,应该关注哪种尺码销量最多.【详解】由于众数是数据中出现次数最多的数,故应该关注这组数据中的众数.故选D【点睛】本题考查了数据的选择,根据题意分析,即可完成。属于基础题.9、B【解析】分析:画树状图展示所有12种等可能的结果数,再找出抽取的两张卡片上数字之积为负数的结果数,然后根据概率公式求解.详解:画树状图如下:由树状图可知共有12种等可能结果,其中抽取的两张卡片上数字之积为负数的结果有4种,所以抽取的两张卡片上数字之积为负数的概率为=,故选:B.点睛:本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.10、D【分析】根据垂径定理分析即可.【详解】根据垂径定理和等弧对等弦,得A.B.

C正确,只有D错误.故选D.【点睛】本题考查了垂径定理,熟练掌握垂直于弦(非直径)的直径平分弦且平分这条弦所对的两条弧是解题的关键.11、C【解析】根据相似三角形的性质可得,再根据,DE=6,即可得出,进而得到BC长.【详解】∵DE∥BC,∴△ADE∽△ABC,∴,又∵,DE=6,∴,∴BC=10,故选:C.【点睛】本题主要考查了相似三角形的判定与性质的运用,在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用.12、C【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目,二者的比值就是其发生的概率.【详解】解:依题意有:=1.2,

解得:n=2.

故选:C.【点睛】此题考查了利用概率的求法估计总体个数,利用如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=是解题关键.二、填空题(每题4分,共24分)13、【分析】先确定出原抛物线的顶点坐标为(0,0),然后根据向左平移横坐标加,向下平移纵坐标减,求出新抛物线的顶点坐标,然后写出即可.【详解】抛物线的顶点坐标为(0,0),

∵向左平移1个单位长度后,向下平移2个单位长度,

∴新抛物线的顶点坐标为(-1,-2),

∴所得抛物线的解析式是.

故答案为:.【点睛】本题主要考查的是函数图象的平移,根据平移规律“左加右减,上加下减”利用顶点的变化确定图形的变化是解题的关键.14、【分析】根据向量的加减法法则计算即可.【详解】解:-=.【点睛】本题考查了向量的加减法,掌握运算法则是关键.15、40【解析】利用等腰直角三角形的性质得出AB=AD,再利用锐角三角函数关系即可得出答案.【详解】解:由题意可得:∠BDA=45°,则AB=AD=120m,又∵∠CAD=30°,∴在Rt△ADC中,tan∠CDA=tan30°=,解得:CD=40(m),故答案为40.【点睛】此题主要考查了解直角三角形的应用,正确得出tan∠CDA=tan30°=是解题关键.16、【分析】观察图象当时,直线在抛物线上方,此时二次函数值小于一次函数值,当或时,直线在抛物线下方,二次函数值大于一次函数值,将不等式变形,观察图象确定x的取值范围,即为不等式的解集.【详解】解:设,,∵∴,∴即二次函数值小于一次函数值,∵抛物线与直线交点为,,∴由图象可得,x的取值范围是.【点睛】本题考查不等式与函数的关系及函数图象交点问题,理解图象的点坐标特征和数形结合思想是解答此题的关键.17、0.1【分析】6批次种子粒数从100粒增加到5000粒时,种子发芽的频率趋近于0.101,所以估计种子发芽的概率为0.101,再精确到0.1,即可得出答案.【详解】根据题干知:当种子粒数5000粒时,种子发芽的频率趋近于0.101,故可以估计种子发芽的概率为0.101,精确到0.1,即为0.1,故本题答案为:0.1.【点睛】本题比较容易,考查利用频率估计概率,大量反复试验下频率稳定值即概率.18、22015π【分析】连接P1O1,P2O2,P3O3,易求得PnOn垂直于x轴,可知为圆的周长,再找出圆半径的规律即可解题.【详解】解:连接P1O1,P2O2,P3O3…,∵P1是⊙O1上的点,∴P1O1=OO1,∵直线l解析式为y=x,∴∠P1OO1=45°,∴△P1OO1为等腰直角三角形,即P1O1⊥x轴,同理,PnOn垂直于x轴,∴为圆的周长,∵以O1为圆心,O1O为半径画圆,交x轴正半轴于点O2,以O2为圆心,O2O为半径画圆,交x轴正半轴于点O3,以此类推,∴OO1=1=20,OO2=2=21,OO3=4=22,OO4=8=23,…,∴OOn=,∴,∴,故答案为:22015π.【点睛】本题考查了图形类规律探索、一次函数的性质、等腰直角三角形的性质以及弧长的计算,本题中准确找到圆半径的规律是解题的关键.三、解答题(共78分)19、(1)图见解析;(2)2,关于中心对称;(3).【分析】(1)根据图形旋转的性质画出旋转后的△即可;(2)根据中心对称的性质即可得出结论;(3)根据弧长公式求解即可.【详解】解:(1)如图,△即为所求;(2)点的对应点的坐标为,点与关于点对称,.故答案为:2,关于中心对称.(3)∵点A坐标为∴,则旋转到点所经过的路径长.【点睛】本题考查了根据旋转变换作图以及弧长公式,解答本题的关键是根据网格结构找出对应点的位置.20、(1),,;(2)4500人;(3)【分析】(1)根据条形统计图和扇形统计图的信息,即可求解;(2)由小区总人数×使用过“共享单车”的百分比,即可得到答案;(3)根据题意,列出表格,再利用概率公式,即可求解.【详解】(1)50÷25%=200(人),200×(1-30%-25%-20%)=50(人),360°×30%=108°,答:这次被调查的总人数是200人,“:了解但不使用”的人数是50人,“:不了解”所占扇形统计图的圆心角度数为108°.故答案是:,,;(2)×(25%+20%)=(人),答:估计使用过“共享单车”的大约有人;(3)列表如下:小张小李黄色蓝色绿色黄色(黄色,黄色)(黄色,蓝色)(黄色,绿色)蓝色(蓝色,黄色)(蓝色,蓝色)(蓝色,绿色)绿色(绿色,黄色)(绿色,蓝色)(绿色,绿色)由列表可知:一共有种等可能的情况,两人骑同一种颜色有三种情况:(黄色,黄色),(蓝色,蓝色),(绿色,绿色).【点睛】本题主要考查扇形统计图和条形统计图以及简单事件的概率,列出表格,得到事件的等可能的情况数,是解题的关键.21、(1)c=﹣4,2a+b=2;(2)0<a≤1;(3)①a=;②见解析,a=1.【分析】(1)令x=0,则c=−4,将点B(2,0)代入y=ax2+bx+c可得2a+b=2;(2)由已知可知抛物线开口向上,a>0,对称轴x=﹣=﹣=1﹣≤0,即可求a的范围;(3)①m=n时,M(p,m),N(−2−p,n)关于对称轴对称,则有1−=−1;②将点N(−2−p,n)代入y=−2x−3等式成立,则可证明N点在直线上,再由直线与抛物线的两个交点是M、N,则有根与系数的关系可得p+(−2−p)=,即可求a.【详解】(1)令x=0,则c=﹣4,将点B(2,0)代入y=ax2+bx+c可得4a+2b﹣4=0,∴2a+b=2;(2)∵抛物线在A和B两点间,y随x的增大而增大,∴抛物线开口向上,∴a>0,∵A(0,﹣4)和B(2,0),∴对称轴x=﹣=﹣=1﹣≤0,∴0<a≤1;(3)①当m=n时,M(p,m),N(﹣2﹣p,n)关于对称轴对称,∴对称轴x=1﹣=﹣1,∴a=;②将点N(﹣2﹣p,n)代入y=﹣2x﹣3,∴n=4+2p﹣3=1+2p,∴N点在y=﹣2x﹣3上,联立y=﹣2x﹣3与y=ax2+(2﹣2a)x﹣4有两个不同的实数根,∴ax2+(4﹣2a)x﹣1=0,∵p+(﹣2﹣p)=-=,∴a=1.【点睛】本题考查二次函数的性质;熟练掌握二次函数的图象及性质,能结合函数的对称性、增减性、直线与抛物线的交点个数综合解题是关键.22、S四边形ADBC=49(cm2).【分析】根据直径所对的角是90°,判断出△ABC和△ABD是直角三角形,根据圆周角∠ACB的平分线交⊙O于D,判断出△ADB为等腰直角三角形,根据勾股定理求出AD、BD、AC的值,再根据S四边形ADBC=S△ABD+S△ABC进行计算即可.【详解】∵AB为直径,∴∠ADB=90°,又∵CD平分∠ACB,即∠ACD=∠BCD,∴,∴AD=BD,∵直角△ABD中,AD=BD,AD2+BD2=AB2=102,则AD=BD=5,则S△ABD=AD•BD=×5×5=25(cm2),在直角△ABC中,AC==6(cm),则S△ABC=AC•BC=×6×8=24(cm2),则S四边形ADBC=S△ABD+S△ABC=25+24=49(cm2).【点睛】本题考查了圆周角定理、三角形的面积等,正确求出相关的数值是解题的关键.23、(1);(2)x1=3,x2=1.【分析】(1)把特殊角的三角函数值代入,然后进行计算即可;(2)移项后用分解因式法求解.【详解】解:(1)原式=;(2)移项,得:2(x﹣3)2﹣x(x﹣3)=0,即(x﹣3)(2x﹣1﹣x)=0,∴x﹣3=0或x﹣1=0,解得:x1=3,x2=1.【点睛】本题考查了特殊角的三角函数值的有关运算和一元二次方程的解法,属于基础题型,熟练掌握基本知识是解题的关键.24、(1)甲同学的方案不公平.理由见解析;(2)公平,理由见解析.【解析】(1)依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率,比较即可.

(2)解题思路同上.【详解】(1)甲同学的方案不公平.理由如下:列表法,所有结果有12种,数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论