版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省秦皇岛海港区五校联考2025届数学九上期末综合测试试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.如图,已知四边形ABCD内接于⊙O,AB是⊙O的直径,EC与⊙O相切于点C,∠ECB=35°,则∠D的度数是()A.145° B.125° C.90° D.80°2.函数的图象上有两点,,若,则()A. B. C. D.、的大小不确定3.如图,抛物线的对称轴为直线,则下列结论中,错误的是()A. B. C. D.4.二次函数y=x2﹣6x图象的顶点坐标为()A.(3,0) B.(﹣3,﹣9) C.(3,﹣9) D.(0,﹣6)5.圆锥的底面半径为2,母线长为6,它的侧面积为()A. B. C. D.6.在Rt△ABC中,∠C=90°,AB=13,AC=5,则tanA的值为A. B. C. D.7.如图,图1是由5个完全相同的正方体堆成的几何体,现将标有E的正方体平移至如图2所示的位置,下列说法中正确的是()A.左、右两个几何体的主视图相同B.左、右两个几何体的左视图相同C.左、右两个几何体的俯视图不相同D.左、右两个几何体的三视图不相同8.从这七个数中随机抽取一个数记为,则的值是不等式组的解,但不是方程的实数解的概率为().A. B. C. D.9.如图所示,图中既是轴对称图形,又是中心对称图形的是()A. B. C. D.10.如图,二次函数y=ax1+bx+c的图象与x轴交于点A(﹣1,0),与y轴的交点B在(0,1)与(0,3)之间(不包括这两点),对称轴为直线x=1.下列结论:①abc<0;②9a+3b+c>0;③若点M(,y1),点N(,y1)是函数图象上的两点,则y1<y1;④﹣<a<﹣;⑤c-3a>0其中正确结论有()A.1个 B.3个 C.4个 D.5个11.如图,点()是反比例函数上的动点,过分别作轴,轴的垂线,垂足分别为,.随着的增大,四边形的面积()A.增大 B.减小 C.不确定 D.不变12.已知正多边形的一个外角为36°,则该正多边形的边数为().A.12 B.10 C.8 D.6二、填空题(每题4分,共24分)13.一个半径为5cm的球形容器内装有水,若水面所在圆的直径为8cm,则容器内水的高度为_____cm.14.点A(-1,m)和点B(-2,n)都在抛物线上,则m与n的大小关系为m______n(填“”或“”).15.如图,原点O为平行四边形A.BCD的对角线A.C的中点,顶点A,B,C,D的坐标分别为(4,2),(,b),(m,n),(-3,2).则(m+n)(+b)=__________.16.已知关于x的函数满足下列条件:①当x>0时,函数值y随x值的增大而减小;②当x=1时,函数值y=1.请写一个符合条件函数的解析式:_____.(答案不唯一)17.如图,点A、B分别在反比例函数y=(k1>0)和y=(k2<0)的图象上,连接AB交y轴于点P,且点A与点B关于P成中心对称.若△AOB的面积为4,则k1-k2=______.18.某个周末小月和小华在南滨路跑步锻炼身体,两人同时从A点出发,沿直线跑到B点后马上掉头原路返回A点算一个来回,回到A点后又马上调头去往B点,以此类推,每人要完成2个来回。一直两人全程均保持匀速,掉头时间忽略不计。如图所示是小华从出发到他率先完成第一个来回为止,两人到B点的距离之和y(米)与小华跑步时间x(分钟)之间的函数图像,则当小华跑完2个来回时,小月离B点的距离为___米.三、解答题(共78分)19.(8分)数学兴趣小组想利用所学的知识了解某广告牌的高度,已知CD=2m.经测量,得到其它数据如图所示.其中∠CAH=37°,∠DBH=67°,AB=10m,请你根据以上数据计算GH的长.(参考数据,,)20.(8分)如图,为线段的中点,与交于点,,且交于,交于.(1)证明:.(2)连结,如果,,,求的长.21.(8分)图①是一枚质地均匀的正四面体形状的骰子,每个面上分别标有数字1,2,3,4,图②是一个正六边形棋盘,现通过掷骰子的方式玩跳棋游戏,规则是:将这枚骰子掷出后,看骰子向上三个面(除底面外)的数字之和是几,就从图②中的A点开始沿着顺时针方向连续跳动几个顶点,第二次从第一次的终点处开始,按第一次的方法跳动.(1)随机掷一次骰子,则棋子跳动到点C处的概率是(2)随机掷两次骰子,用画树状图或列表的方法,求棋子最终跳动到点C处的概率.22.(10分)不透明的口袋里装有红、黄、蓝三种颜色的小球若干个(小球除颜色外其余都相同),其中黄球2个,蓝球1个.若从中随机摸出一个球,摸到蓝球的概率是.(1)求口袋里红球的个数;(2)第一次随机摸出一个球(不放回),第二次再随机摸出一个球,请用列表或画树状图的方法,求两次摸到的球恰是一黄一蓝的概率.23.(10分)长城公司为希望小学捐赠甲、乙两种品牌的体育器材,甲品牌有A、B、C三种型号,乙品牌有D、E两种型号,现要从甲、乙两种品牌的器材中各选购一种型号进行捐赠.(1)写出所有的选购方案(用列表法或树状图);(2)如果在上述选购方案中,每种方案被选中的可能性相同,那么A型器材被选中的概率是多少.24.(10分)老师随机抽查了本学期学生读课外书册数的情况,绘制成条形统计图(如图1)和不完整的扇形图(如图2),其中条形统计图被墨迹遮盖了一部分.(1)求条形统计图中被遮盖的数,并写出册数的中位数;(2)随后又补查了另外几人,得知最少的读了6册,将其与之前的数据合并后,发现册数的中位数没有改变,则最多补查了____人.25.(12分)(1)计算:;(2)解分式方程:;(3)解不等式组:.26.如图,在平面直角坐标系中,直线与x轴、y轴分别交于A、B两点,点P从点A出发,沿折线AB﹣BO向终点O运动,在AB上以每秒5个单位长度的速度运动,在BO上以每秒3个单位长度的速度运动;点Q从点O出发,沿OA方向以每秒个单位长度的速度运动.P,Q两点同时出发,当点P停止时,点Q也随之停止.过点P作PE⊥AO于点E,以PE,EQ为邻边作矩形PEQF,设矩形PEQF与△ABO重叠部分图形的面积为S,点P运动的时间为t秒.(1)连结PQ,当PQ与△ABO的一边平行时,求t的值;(2)求S与t之间的函数关系式,并直接写出自变量t的取值范围.
参考答案一、选择题(每题4分,共48分)1、B【解析】试题解析:连接∵EC与相切,故选B.点睛:圆内接四边形的对角互补.2、C【分析】根据题意先确定抛物线的对称轴及开口方向,再根据点与对称轴的远近,判断函数值的大小.【详解】解:∵,∴对称轴是x=-2,开口向下,距离对称轴越近,函数值越大,∵,∴.故选:C.【点睛】本题主要考查二次函数的图象性质及单调性的规律,掌握开口向下,距离对称轴越近,函数值越大是解题的关键.3、C【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【详解】A、由抛物线的开口向下知,与轴的交点在轴的正半轴上,可得,因此,故本选项正确,不符合题意;B、由抛物线与轴有两个交点,可得,故本选项正确,不符合题意;C、由对称轴为,得,即,故本选项错误,符合题意;D、由对称轴为及抛物线过,可得抛物线与轴的另外一个交点是,所以,故本选项正确,不符合题意.故选C.【点睛】本题考查了二次函数图象与系数的关系.会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.4、C【分析】将二次函数解析式变形为顶点式,进而可得出二次函数的顶点坐标.【详解】解:∵y=x2﹣6x=x2﹣6x+9﹣9=(x﹣3)2﹣9,∴二次函数y=x2﹣6x图象的顶点坐标为(3,﹣9).故选:C.【点睛】此题主要考查二次函数的顶点,解题的关键是熟知二次函数的图像与性质.5、B【分析】根据圆锥的底面半径为2,母线长为6,直接利用圆锥的侧面积公式求出它的侧面积.【详解】根据圆锥的侧面积公式:rl=×2×6=12,故选:B.【点睛】本题主要考查了圆锥侧面积公式.熟练地应用圆锥侧面积公式求出是解决问题的关键.6、D【分析】利用勾股定理即可求得BC的长,然后根据正切的定义即可求解.【详解】根据勾股定理可得:BC=∴tanA=.故选:D.【点睛】本题考查了勾股定理和三角函数的定义,正确理解三角函数的定义是关键.7、B【分析】直接利用已知几何体分别得出三视图进而分析得出答案.【详解】A、左、右两个几何体的主视图为:,故此选项错误;B、左、右两个几何体的左视图为:,故此选项正确;C、左、右两个几何体的俯视图为:,故此选项错误;D、由以上可得,此选项错误;故选B.【点睛】此题主要考查了简单几何体的三视图,正确把握观察的角度是解题关键.8、B【分析】先解不等式,再解一元二次方程,利用概率公式得到概率【详解】解①得,,解②得,.∴.∵的值是不等式组的解,∴.方程,解得,.∵不是方程的解,∴或.∴满足条件的的值为,(个).∴概率为.故选.9、C【解析】根据轴对称图形和中心对称图形的定义(轴对称图形是沿某条直线对折,对折的两部分能够完全重合的图形,中心对称图形是绕着某一点旋转后能与自身重合的图形)判断即可.【详解】解:A选项是中心对称图形但不是轴对称图形,A不符合题意;B选项是轴对称图形但不是中心对称图形,B不符合题意;C选项既是轴对称图形又是中心对称图形,C符合题意;D选项既不是轴对称图形又不是中心对称图形.故选:C.【点睛】本题考查了轴对称图形与中心对称图形,熟练掌握轴对称图形与中心对称图形的判断方法是解题的关键.10、D【分析】根据二次函数的图项与系数的关系即可求出答案.【详解】①∵图像开口向下,,∵与y轴的交点B在(0,1)与(0,3)之间,,∵对称轴为x=1,,∴b=-4a,∴b>0,∴abc<0,故①正确;②∵图象与x轴交于点A(-1,0),对称轴为直线x=1,∴图像与x轴的另一个交点为(5,0),∴根据图像可以看出,当x=3时,函数值y=9a+3b+c>0,故②正确;③∵点,∴点M到对称轴的距离为,点N到对称轴的距离为,∴点M到对称轴的距离大于点N到对称轴的距离,∴,故③正确;④根据图像与x轴的交点坐标可以设函数的关系式为:y=a(x-5)(x+1),把x=0代入得y=-5a,∵图像与y轴的交点B在(0,1)与(0,3)之间,,解不等式组得,故④正确;⑤∵对称轴为x=1,∴b=-4a,当x=1时,y=a+b+c=a-4a+c=c-3a>0,故⑤正确;综上分析可知,正确的结论有5个,故D选项正确.故选D.【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y=ax1+bx+c(a≠0)的图象,当a>0,开口向上,函数有最小值,a<0,开口向下,函数有最大值;对称轴为直线x=,a与b同号,对称轴在y轴的左侧,a与b异号,对称轴在y轴的右侧;当c>0,抛物线与y轴的交点在x轴的上方.11、D【分析】由长方形的面积公式可得出四边形的面积为mn,再根据点Q在反比例函数图象上,可知,从而可判断面积的变化情况.【详解】∵点∴四边形的面积为,∵点()是反比例函数上的动点∴四边形的面积为定值,不会发生改变故选:D.【点睛】本题主要考查反比例函数比例系数的几何意义,掌握反比例函数比例系数的几何意义是解题的关键.12、B【解析】利用多边形的外角和是360°,正多边形的每个外角都是36°,即可求出答案.【详解】解:360°÷36°=10,所以这个正多边形是正十边形.故选:B.【点睛】本题主要考查了多边形的外角和定理.是需要识记的内容.二、填空题(每题4分,共24分)13、2或1【分析】分两种情况:(1)容器内水的高度在球形容器的球心下面;(2)容器内水的高度在球形容器的球心上面;根据垂径定理和勾股定理计算即可求解.【详解】过O作OC⊥AB于C,∴AC=BC=AB=4cm.在Rt△OCA中,∵OA=5cm,则OC3(cm).分两种情况讨论:(1)容器内水的高度在球形容器的球心下面时,如图①,延长OC交⊙O于D,容器内水的高度为CD=OD﹣CO=5﹣3=2(cm);(2)容器内水的高度在球形容器的球心是上面时,如图②,延长CO交⊙O于D,容器内水的高度为CD=OD+CO=5+3=1(cm).则容器内水的高度为2cm或1cm.故答案为:2或1.【点睛】本题考查了垂径定理以及勾股定理,勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.注意分类思想的应用.14、<.【解析】试题解析:当时,当时,故答案为:15、-6【分析】易知点A与点C关于原点O中心对称,由平行四边形的性质可知点B和点D关于原点O对称,根据关于原点对称横纵坐标都互为相反数可得点B、点C坐标,求解即可.【详解】解:根据题意得点A与点C关于原点O中心对称,点B和点D关于原点O对称故答案为:【点睛】本题考查了平面直角坐标系中的中心对称,正确理解题意是解题的关键.16、y=(答案不唯一).【分析】根据反比例函数的性质解答.【详解】解:根据反比例函数的性质关于x的函数当x>0时,函数值y随x值的增大而减小,则函数关系式为y=(k>0),把当x=1时,函数值y=1,代入上式得k=1,符合条件函数的解析式为y=(答案不唯一).【点睛】此题主要考察反比例函数的性质,判断k与零的大小是关键.17、1【分析】作AC⊥y轴于C,BD⊥y轴于D,如图,先证明△ACP≌△BDP得到S△ACP=S△BDP,利用等量代换和k的几何意义得到=S△AOC+S△BOD=×|k1|+|k2|=4,然后利用k1<0,k2>0可得到k2-k1的值.【详解】解:作AC⊥y轴于C,BD⊥y轴于D,如图,∵点A与点B关于P成中心对称.
∴P点为AB的中点,
∴AP=BP,
在△ACP和△BDP中,
∴△ACP≌△BDP(AAS),
∴S△ACP=S△BDP,
∴S△AOB=S△APO+S△BPO=S△AOC+S△BOD=×|k1|+|k2|=4,∴|k1|+|k2|=1
∵k1>0,k2<0,
∴k1-k2=1.
故答案为1.【点睛】本题考查了比例系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k|,且保持不变.也考查了反比例函数的性质.18、1【分析】根据题意和函数图象中的数据可以求得点A和点B之间的距离,再根据图象中的数据可以求得当小华跑完2个米回时,小月离B点的距离,本题得以解决.【详解】解:设A点到B点的距离为S米,小华的速度为a米/分,小月的速度为b米/分,,解得:;则当小华跑完1个来回时,小月离B点的距离为:772-550=222(米),即小华跑完1个来回比小月多跑的路程是:550-222=328(米),故小华跑完2个来回比小月多跑的路程是:328×2=656(米),则当小华跑完2个米回时,小月离B点的距离为:656-550=1(米)故答案为:1.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.三、解答题(共78分)19、GH的长为10m【分析】首先构造直角三角形,设DE=xm,则CE=(x+2)m,由三角函数得出AE和BE,由AE=BE=AB得出方程,解方程求出DE,即可得出GH的长【详解】解:延长CD交AH于点E,则CE⊥AH,如图所示.设DE=xm,则CE=(x+2)m,在Rt△AEC和Rt△BED中,tan37°=,tan67°=,∴AE=,BE=.∵AE﹣BE=AB,∴﹣=10,即=10,解得:x=8,∴DE=8m,∴GH=CE=CD+DE=2m+8m=10m.答:GH的长为10m.【点睛】本题考查解直角三角形的应用,解题关键在于作出点E20、(1)见解析;(2)【分析】(1)由,可证∠AFM=∠BMG,从而可证;(2)当时,可得且,再根据可求BG,从而可求CF,CG,进而可求答案.【详解】(1)证明:∵∴,又∵∴.解:(2)∵,∴且∵为的中点,∴又∵,∴∴∴,∴【点睛】本题考查的是相似三角形的判定与性质和勾股定理,熟练掌握相似三角形的相关知识与勾股定理是解题的关键.21、(1);(2)棋子最终跳动到点C处的概率为.【解析】(1)和为8时,可以到达点C,根据概率公式计算即可;(2)列表得到所有的情况数,然后再找到符合条件的情况数,利用概率公式进行求解即可.【详解】随机掷一次骰子,骰子向上三个面(除底面外)的数字之和可以是6、7、8、9.(1)随机掷一次骰子,满足棋子跳动到点C处的数字是8,则棋子跳动到点C处的概率是,故答案为;(2)列表得:987699,98,97,96,989,88,87,86,879,78,77,76,769,68,67,66,6共有16种可能,和为14可以到达点C,有3种情形,所以棋子最终跳动到点C处的概率为.【点睛】本题考查列表法与树状图,概率公式等知识,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.22、(1)1;(2)见解析,【分析】(1)设红球有x个,根据题意得:;(2)列表,共有12种等可能性的结果,其中两次摸到的球恰是一黄一蓝的情况有4种.【详解】解:(1)设红球有x个,根据题意得:,解得:x=1,经检验x=1是原方程的根.则口袋中红球有1个(2)列表如下:
红黄黄蓝红---(黄,红)(黄,红)(蓝,红)黄(红,黄)---(黄,黄)(蓝,黄)黄(红,黄)(黄,黄)---(蓝,黄)蓝(红,蓝)(黄,蓝)(黄,蓝)---由上表可知,共有12种等可能性的结果,其中两次摸到的球恰是一黄一蓝的情况有4种,则P=【点睛】考核知识点:用列举法求概率.列表是关键.23、(1)答案见解析;(2)【分析】(1)画出树状图即可;(2)根据树状图可以直观的得到共有6种情况,选中A的情况有2种,进而得到概率.【详解】解:(1)如图所示:(2)所有的情况有6种,A型器材被选中情况有2种中,概率是.【点睛】本题考查概率公式,即如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.24、(1)被遮盖的数是9,中位数为5;(2)1.【分析】(1)用读书为6册的人数除以它所占的百分比得到调查的总人数,再用总人数分别减去读书为4册、6册和7册的人数得到读
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 合理利用网络说课稿分钟
- 碧桂园物业管家述职报告
- 教育器材租赁合同模板
- 胸腰椎骨折的诊断与治疗
- 温室大棚灌溉系统安装协议
- 新能源项目密封条模板
- 外卖公司墙布施工合同协议
- 城市住宅楼隔音改造合同
- 科研机构办公设备招投标书
- 城市有轨电车塔吊租赁合同
- 公务员(国考)之行政职业能力测验模拟考试试卷A卷含答案
- CH-T 1026-2012 数字高程模型质量检验技术规程
- 创新创业基础-理论、案例与训练(大学生创新创业教育课程)全套教学课件
- 展厅设计施工合同
- 2024年江苏省高中学业水平合格性考试数学试卷试题(答案详解1)
- 2024年中国邮政集团有限公司校园招聘考试试题及参考答案
- 认识城市轨道交通安全管理讲解
- 场内运输机械检查验收表
- 不锈钢加工检验标准
- 泰国投资指导手册
- 2024年新华社招聘笔试参考题库附带答案详解
评论
0/150
提交评论