版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省常州市武进星辰实验学校2025届九年级数学第一学期期末达标检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图是以△ABC的边AB为直径的半圆O,点C恰好在半圆上,过C作CD⊥AB交AB于D.已知cos∠ACD=,BC=4,则AC的长为()A.1 B. C.3 D.2.若四边形ABCD是⊙O的内接四边形,且∠A︰∠B︰∠C=1︰3︰8,则∠D的度数是A.10° B.30° C.80° D.120°3.若正比例函数y=mx(m≠0),y随x的增大而减小,则它和二次函数y=mx2+m的图象大致是()A. B. C. D.4.已知反比例函数的图象经过点(2,-2),则k的值为A.4 B. C.-4 D.-25.用一块长40cm,宽28cm的矩形铁皮,在四个角截去四个全等的正方形后,折成一个无盖的长方形盒子,若折成的长方体的底面积为,设小正方形的边长为xcm,则列方程得()A.(20﹣x)(14﹣x)=360 B.(40﹣2x)(28﹣2x)=360C.40×28﹣4x2=360 D.(40﹣x)(28﹣x)=3606.甲、乙两名同学在一次用频率去估计概率的实验中,统计了某一结果出现的频率绘出的统计图如图,则符合这一结果的实验可能是()A.掷一枚正六面体的骰子,出现1点的概率B.抛一枚硬币,出现正面的概率C.从一个装有2个白球和1个红球的袋子中任取一球,取到红球的概率D.任意写一个整数,它能被2整除的概率7.已知:m=+1,n=﹣1,则=()A.±3 B.﹣3 C.3 D.8.如图,四边形ABCD内接于,如果它的一个外角∠DCE=64°,那么∠BOD=()A.128° B.100° C.64° D.32°9.关于x的一元二次方程x2+ax﹣1=0的根的情况是()A.没有实数根 B.只有一个实数根C.有两个相等的实数根 D.有两个不相等的实数根10.如图,在△ABC中,DE∥BC,若DE=2,BC=6,则=()A. B. C. D.二、填空题(每小题3分,共24分)11.已知点在直线上,也在双曲线上,则m2+n2的值为______.12.太阳从西边升起是_____事件.(填“随机”或“必然”或“不可能”).13.如图,在半径为的中,的长为,若随意向圆内投掷一个小球,小球落在阴影部分的概率为______________.14.若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是__________.15.如图,以AB为直径,点O为圆心的半圆经过点C,若AC=BC=,则图中阴影部分的面积是___________16.如图,抛物线与x轴交于A、B两点,与y轴交于C点,⊙B的圆心为B,半径是1,点P是直线AC上的动点,过点P作⊙B的切线,切点是Q,则切线长PQ的最小值是__.17.某种品牌运动服经过两次降价,每件零售价由560元降为315元,已知两次降价的百分率相同,求每次降价的百分率设每次降价的百分率为x,所列方程是______.18.中山市田心森林公园位于五桂山主峰脚下,占地3400多亩,约合2289000平方米,用科学记数法表示2289000为__________.三、解答题(共66分)19.(10分)现代城市绿化带在不断扩大,绿化用水的节约是一个非常重要的问题.如图1、图2所示,某喷灌设备由一根高度为0.64m的水管和一个旋转喷头组成,水管竖直安装在绿化带地面上,旋转喷头安装在水管顶部(水管顶部和旋转喷头口之间的长度、水管在喷灌区域上的占地面积均忽略不计),旋转喷头可以向周围喷出多种抛物线形水柱,从而在绿化带上喷灌出一块圆形区域.现测得喷的最远的水柱在距离水管的水平距离3m处达到最高,高度为1m.(1)求喷灌出的圆形区域的半径;(2)在边长为16m的正方形绿化带上固定安装三个该设备,喷灌区域可以完全覆盖该绿化带吗?如果可以,请说明理由;如果不可以,假设水管可以上下调整高度,求水管高度为多少时,喷灌区域恰好可以完全覆盖该绿化带.(以上需要画出示意图,并有必要的计算、推理过程)20.(6分)如图,抛物线与x轴相交于A,B两点,与y轴相交于点C.点D是直线AC上方抛物线上一点,过点D作y轴的平行线,与直线AC相交于点E.(1)求直线AC的解析式;(2)当线段DE的长度最大时,求点D的坐标.21.(6分)定义:如果一个四边形的一组对角互余,那么我们称这个四边形为“对角互余四边形”.(1)如图①,在对角互余四边形ABCD中,∠B=60°,且AC⊥BC,AC⊥AD,若BC=1,则四边形ABCD的面积为;(2)如图②,在对角互余四边形ABCD中,AB=BC,BD=13,∠ABC+∠ADC=90°,AD=8,CD=6,求四边形ABCD的面积;(3)如图③,在△ABC中,BC=2AB,∠ABC=60°,以AC为边在△ABC异侧作△ACD,且∠ADC=30°,若BD=10,CD=6,求△ACD的面积.22.(8分)如图,放置在水平桌面上的台灯的灯臂AB长为40cm,灯罩BC长为30cm,底座厚度为2cm,灯臂与底座构成的∠BAD=60°,使用发现,光线最佳时灯罩BC与水平线所成的角为30°,此时灯罩顶端C到桌面的高度CE是多少cm?23.(8分)如图,在△ABC中,O是AB边上的点,以O为圆心,OB为半径的⊙0与AC相切于点D,BD平分∠ABC,AD=OD,AB=12,求CD的长.24.(8分)用你喜欢的方法解方程(1)x2﹣6x﹣6=0(2)2x2﹣x﹣15=025.(10分)抛物线的顶点为,且过点,求它的函数解析式.26.(10分)如图,一枚运载火箭从地面处发射,当火箭到达点时,从位于地面处的雷达站测得的距离是6,仰角为;1后火箭到达点,此时测得仰角为(所有结果取小数点后两位).(1)求地面雷达站到发射处的水平距离;(2)求这枚火箭从到的平均速度是多少?(参考数据:,,,,,)
参考答案一、选择题(每小题3分,共30分)1、D【解析】∵AB是直径,∴∠ACB=90°.∵CD⊥AB,∴∠ADC=90°.∴∠ACD=∠B.在Rt△ABC中,∵,BC=4,∴,解得.∴.故选D.2、D【解析】试题分析:设∠A=x,则∠B=3x,∠C=8x,因为四边形ABCD为圆内接四边形,所以∠A+∠C=180°,即:x+8x=180,∴x=20°,则∠A=20°,∠B=60°,∠C=160°,所以∠D=120°,故选D考点:圆内接四边形的性质3、A【详解】∵正比例函数y=mx(m≠0),y随x的增大而减小,∴该正比例函数图象经过第一、三象限,且m<0,∴二次函数y=mx2+m的图象开口方向向下,且与y轴交于负半轴,综上所述,符合题意的只有A选项,故选A.4、C【解析】∵反比例函数的图象经过点(2,-2),∴.故选C.5、B【分析】由题意设剪掉的正方形的边长为xcm,根据长方体的底面积为列出方程即可.【详解】解:设剪掉的正方形的边长为xcm,则(28﹣2x)(40﹣2x)=1.故选:B.【点睛】本题考查一元二次方程的应用,解答本题的关键是仔细审题并建立方程.6、C【解析】解:A.掷一枚正六面体的骰子,出现1点的概率为,故此选项错误;B.掷一枚硬币,出现正面朝上的概率为,故此选项错误;C.从一装有2个白球和1个红球的袋子中任取一球,取到红球的概率是:≈0.33;故此选项正确;D.任意写出一个整数,能被2整除的概率为,故此选项错误.故选C.7、C【分析】先根据题意得出和的值,再把式子化成含与的形式,最后代入求值即可.【详解】由题得:、∴故选:C.【点睛】本题考查代数式求值和完全平方公式,运用整体思想是关键.8、A【详解】∵四边形ABCD内接于⊙O,∴∠A=∠DCE=64°,∴∠BOD=2∠A=128°.故选A.9、D【解析】∵△=>0,∴方程有两个不相等的实数根.故选D.10、D【解析】由DE∥BC知△ADE∽△ABC,然后根据相似比求解.【详解】解:∵DE∥BC
∴△ADE∽△ABC.又因为DE=2,BC=6,可得相似比为1:3.即==.故选D.【点睛】本题主要是先证明两三角形相似,再根据已给的线段求相似比即可.二、填空题(每小题3分,共24分)11、1【解析】分析:直接利用一次函数图象上点的坐标特征以及反比例函数图象上点的特征得出n+m以及mn的值,再利用完全平方公式将原式变形得出答案.详解:∵点P(m,n)在直线y=-x+2上,∴n+m=2,∵点P(m,n)在双曲线y=-上,∴mn=-1,∴m2+n2=(n+m)2-2mn=4+2=1.故答案为1.点睛:此题主要考查了一次函数图象上点的坐标特征以及反比例函数图象上点的特征,正确得出m,n之间的关系是解题关键.12、不可能【分析】根据随机事件的概念进行判断即可.【详解】太阳从西边升起是不可能的,∴太阳从西边升起是不可能事件,故答案为:不可能.【点睛】本题考查了随机事件的概念,掌握知识点是解题关键.13、【分析】根据圆的面积公式和扇形的面积公式分别求得各自的面积,再根据概率公式即可得出答案.【详解】∵圆的面积是:,扇形的面积是:,∴小球落在阴影部分的概率为:.故答案为:.【点睛】本题主要考查了几何概率问题,用到的知识点为:概率=相应面积与总面积之比.14、k>﹣1且k≠1.【解析】由关于x的一元二次方程kx2-2x-1=1有两个不相等的实数根,即可得判别式△>1且k≠1,则可求得k的取值范围.【详解】解:∵关于x的一元二次方程kx2﹣2x﹣1=1有两个不相等的实数根,∴△=b2﹣4ac=(﹣2)2﹣4×k×(﹣1)=4+4k>1,∴k>﹣1,∵x的一元二次方程kx2﹣2x﹣1=1∴k≠1,∴k的取值范围是:k>﹣1且k≠1.故答案为:k>﹣1且k≠1.【点睛】此题考查了一元二次方程根的判别式的应用.此题比较简单,解题的关键是掌握一元二次方程根的情况与判别式△的关系:(1)△>1⇔方程有两个不相等的实数根;(2)△=1⇔方程有两个相等的实数根;(3)△<1⇔方程没有实数根.15、【解析】试题解析:∵AB为直径,∴∠ACB=90°,∵AC=BC=,∴△ACB为等腰直角三角形,∴OC⊥AB,∴△AOC和△BOC都是等腰直角三角形,∴S△AOC=S△BOC,OA=AC=1,∴S阴影部分=S扇形AOC=.【点睛】先利用圆周角定理得到∠ACB=90°,则可判断△ACB为等腰直角三角形,接着判断△AOC和△BOC都是等腰直角三角形,于是得到S△AOC=S△BOC,然后根据扇形的面积公式计算图中阴影部分的面积.本题考查了扇形面积的计算:圆面积公式:S=πr2,(2)扇形:由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形.求阴影面积常用的方法:①直接用公式法;②和差法;③割补法.求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积.16、【分析】先根据解析式求出点A、B、C的坐标,求出直线AC的解析式,设点P的坐标,根据过点P作⊙B的切线,切点是Q得到PQ的函数关系式,求出最小值即可.【详解】令中y=0,得x1=-,x2=5,∴直线AC的解析式为,设P(x,),∵过点P作⊙B的切线,切点是Q,BQ=1∴PQ2=PB2-BQ2,=(x-5)2+()2-1,=,∵,∴PQ2有最小值,∴PQ的最小值是,故答案为:,【点睛】此题考查二次函数最小值的实际应用,求动线段的最小值,需构建关于此线段的函数解析式,利用二次函数顶点坐标公式求最值,此题找到线段PQ、BQ、PB之间的关系式是解题的关键.17、【分析】根据降价后的价格=降价前的价格×(1-降价的百分率),则第一次降价后的价格是560(1-x),第二次降价后的价格是560(1-x)2,据此列方程即可.【详解】解:设每次降价的百分率为x,由题意得:560(1-x)2=1,故答案为560(1-x)2=1.【点睛】本题考查了由实际问题抽象出一元二次方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程.18、【分析】科学记数法的表示形式为的形式,其中,为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值时,是正数;当原数的绝对值时,是负数.【详解】解:将2289000用科学记数法表示为:.故答案为:.【点睛】此题考查了科学记数法的表示方法.科学记数法的表示形式为的形式,其中,为整数,表示时关键要正确确定的值以及的值.三、解答题(共66分)19、(1)8m;(2)不可以,水管高度调整到0.7m,理由见解析.【分析】(1)根据题意设最远的抛物线形水柱的解析式为,然后将(0,0.64)代入解析式求得a的值,然后求解析式y=0时,x的值,从而求得半径;(2)利用圆与圆的位置关系结合正方形,作出三个等圆覆盖正方形的图形,然后利用勾股定理求得圆的半径,从而使问题得解.【详解】解:(1)由题意,设最远的抛物线形水柱的解析式为,将(0,0.64)代入解析式,得解得:∴最远的抛物线形水柱的解析式为当y=0时,解得:所以喷灌出的圆形区域的半径为8m;(2)如图,三个等圆覆盖正方形设圆的半径MN=NB=ME=DE=r,则AN=16-r,,MD=,AM=16-∴在Rt△AMN中,解得:(其中,舍去)∴设最远的抛物线形水柱的解析式为,将(8.5,0)代入解得:∴当x=0时,y=∴水管高度约为0.7m时,喷灌区域恰好可以完全覆盖该绿化带【点睛】本题考查待定系数法求二次函数解析式,根据题意设抛物线为顶点式是本题的解题关键.20、(1)直线的解析式为;(2)当的长度最大时,点的坐标为.【分析】(1)根据题意,先求出点A和点C的坐标,然后利用待定系数法,即可求出答案;(2)根据题意,利用m表示DE的长度,然后根据二次函数的性质,即可求出点D的坐标.【详解】解(1)当时,.,.点的坐标是.当时,.点的坐标是.设直线的解析式为,,解得:.直线的解析式为:.(2)如图:设点的横坐标为.则点的坐标为,点的坐标为.所以.∵,∴当时,线段长度最大.将代入,得.∴当的长度最大时,点的坐标为.【点睛】本题考查的是抛物线与x轴的交点,一次函数的性质,掌握二次函数与一元二次方程的关系是解题的关键,解答时,注意待定系数法的灵活运用.21、(1)2;(2)36;(3).【分析】(1)由AC⊥BC,AC⊥AD,得出∠ACB=∠CAD=90°,利用含30°直角三角形三边的特殊关系以及勾股定理,就可以解决问题;(2)将△BAD绕点B顺时针旋转到△BCE,则△BCE≌△BAD,连接DE,作BH⊥DE于H,作CG⊥DE于G,作CF⊥BH于F.这样可以求∠DCE=90°,则可以得到DE的长,进而把四边形ABCD的面积转化为△BCD和△BCE的面积之和,△BDE和△CDE的面积容易算出来,则四边形ABCD面积可求;(3)取BC的中点E,连接AE,作CF⊥AD于F,DG⊥BC于G,则BE=CE=BC,证出△ABE是等边三角形,得出∠BAE=∠AEB=60°,AE=BE=CE,得出∠EAC=∠ECA==30°,证出∠BAC=∠BAE+∠EAC=90°,得出AC=AB,设AB=x,则AC=x,由直角三角形的性质得出CF=3,从而DF=3,设CG=a,AF=y,证明△ACF∽△CDG,得出,求出y=,由勾股定理得出y2=(x)2-32=3x2-9,b2=62-a2=102-(2x+a)2,(2x+a)2+b2=132,整理得出a=,进而得y=,得出[]2=3x2-9,解得x2=34-6,得出y2=()2,解得y=-3,得出AD=AF+DF=,由三角形面积即可得出答案.【详解】解:(1)∵AC⊥BC,AC⊥AD,∴∠ACB=∠CAD=90°,∵对角互余四边形ABCD中,∠B=60°,∴∠D=30°,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=1,∴∠BAC=30°,∴AB=2BC=2,AC=BC=,在Rt△ACD中,∠CAD=90°,∠D=30°,∴AD=AC=3,CD=2AC=2,∵S△ABC=•AC•BC=××1=,S△ACD═•AC•AD=××3=,∴S四边形ABCD=S△ABC+S△ACD=2,故答案为:2;(2)将△BAD绕点B顺时针旋转到△BCE,如图②所示:则△BCE≌△BAD,连接DE,作BH⊥DE于H,作CG⊥DE于G,作CF⊥BH于F.∴∠CFH=∠FHG=∠HGC=90°,∴四边形CFHG是矩形,∴FH=CG,CF=HG,∵△BCE≌△BAD,∴BE=BD=13,∠CBE=∠ABD,∠CEB=∠ADB,CE=AD=8,∵∠ABC+∠ADC=90°,∴∠DBC+∠CBE+∠BDC+∠CEB=90°,∴∠CDE+∠CED=90°,∴∠DCE=90°,在△BDE中,根据勾股定理可得:DE===10,∵BD=BE,BH⊥DE,∴EH=DH=5,∴BH===12,∴S△BED=•BH•DE=×12×10=60,S△CED=•CD•CE=×6×8=24,∵△BCE≌△BAD,∴S四边形ABCD=S△BCD+S△BCE=S△BED﹣S△CED=60﹣24=36;(3)取BC的中点E,连接AE,作CF⊥AD于F,DG⊥BC于G,如图③所示:则BE=CE=BC,∵BC=2AB,∴AB=BE,∵∠ABC=60°,∴△ABE是等边三角形,∴∠BAE=∠AEB=60°,AE=BE=CE,∴∠EAC=∠ECA=∠AEB=30°,∴∠BAC=∠BAE+∠EAC=90°,∴AC=AB,设AB=x,则AC=x,∵∠ADC=30°,∴CF=CD=3,DF=CF=3,设CG=a,AF=y,在四边形ABCD中,∠ABC+∠BCD+∠ADC+∠BAC+∠DAC=360°,∴∠DAC+∠BCD=180°,∵∠BCD+∠DCG=180°,∴∠DAC=∠DCG,∵∠AFC=∠CGD=90°,∴△ACF∽△CDG,∴=,即=,∴y=,在Rt△ACF中,Rt△CDG和Rt△BDG中,由勾股定理得:y2=(x)2﹣32=3x2﹣9,b2=62﹣a2=102﹣(2x+a)2,(2x+a)2+b2=132,整理得:x2+ax﹣16=0,∴a=,∴y==×=,∴[]2=3x2﹣9,整理得:x4﹣68x2+364=0,解得:x2=34﹣6,或x2=34+6(不合题意舍去),∴x2=34﹣6,∴y2=3(34﹣6)﹣9=93﹣18=93﹣2=()2,∴y=﹣3,∴AF=﹣3,∴AD=AF+DF=,∴△ACD的面积=AD×CF=××3=.【点睛】此题是四边形综合题,主要考查了新定义的理解和应用,相似三角形的判定和性质,勾股定理,等边三角形的判定与性质,旋转的性质,全等三角形的性质,含30°角的直角三角形的性质等知识;本题综合性强,有一定难度.22、(20+17)cm.【分析】过点B作BM⊥CE于点M,BF⊥DA于点F,在Rt△BCM和Rt△ABF中,通过解直角三角形可求出CM、BF的长,再由CE=CM+BF+ED即可求出CE的长.【详解】过点B作BM⊥CE于点M,BF⊥DA于点F,如图所示.在Rt△BCM中,BC=30cm,∠CBM=30°,∴CM=BC•sin∠CBM=15cm.在Rt△ABF中,AB=40cm,∠BAD=60°,∴BF=AB•sin∠BAD=20cm.∵∠ADC=∠BMD=∠BFD=90°,∴四边形BFDM为矩形,∴MD=BF,∴CE=CM+MD+DE=CM+BF+ED=15+20+2=20+17(cm).答:此时灯罩顶端C到桌面的高度CE是(20+17)cm.【点睛】本题考查了解直角三角形的应用以及矩形的判定与性质,通过解直角三角形求出
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 房地产业安全生产管理办法
- 动物救助捐赠管理计划
- 体育赛事巴士租赁合同
- 神经外科人才聘用合同模板
- 2022年大学森林资源专业大学物理下册月考试卷C卷-附解析
- 2022年大学生物科学专业大学物理二月考试题C卷-附解析
- 25楼地面采暖工程施工合同
- 2022年大学数学专业大学物理二期末考试试卷D卷-附解析
- 2022年大学口腔医学专业大学物理二期末考试试卷-附解析
- 新生儿湿疹护理健康宣教
- 人教版六年级下册《反比例的量》导学案
- GB 26402-2011 食品安全国家标准 食品添加剂 碘酸钾
- DNA甲基化与肿瘤分子标志
- 《甲方认质认价确认单》
- 降低住院患者跌倒发生率
- 各种烟气焓温、密度、比热计算表
- 导游与旅行社签订劳动合同
- 公路管理工作常见五大诉讼风险及防范
- FLUKE-17B型万用表使用说明
- 探析高校图书馆文创产品开发与推广-以清华大学图书馆为例
- 痰饮咳嗽病脉证并治第十二
评论
0/150
提交评论