版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省成都市青白江区重点达标名校2023-2024学年毕业升学考试模拟卷数学卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(共10小题,每小题3分,共30分)1.函数y=mx2+(m+2)x+m+1的图象与x轴只有一个交点,则m的值为()A.0 B.0或2 C.0或2或﹣2 D.2或﹣22.如图,按照三视图确定该几何体的侧面积是(单位:cm)()A.24πcm2 B.48πcm2 C.60πcm2 D.80πcm23.一、单选题小明和小张两人练习电脑打字,小明每分钟比小张少打6个字,小明打120个字所用的时间和小张打180个字所用的时间相等.设小明打字速度为x个/分钟,则列方程正确的是()A. B. C. D.4.如图,△ABC是⊙O的内接三角形,AC是⊙O的直径,∠C=50°,∠ABC的平分线BD交⊙O于点D,则∠BAD的度数是()A.45° B.85° C.90° D.95°5.如图,已知,那么下列结论正确的是()A. B. C. D.6.将直径为60cm的圆形铁皮,做成三个相同的圆锥容器的侧面(不浪费材料,不计接缝处的材料损耗),那么每个圆锥容器的底面半径为()A.10cm B.30cm C.45cm D.300cm7.在直角坐标系中,设一质点M自P0(1,0)处向上运动一个单位至P1(1,1),然后向左运动2个单位至P2处,再向下运动3个单位至P3处,再向右运动4个单位至P4处,再向上运动5个单位至P5处……,如此继续运动下去,设Pn(xn,yn),n=1,2,3,……,则x1+x2+……+x2018+x2019的值为()A.1 B.3 C.﹣1 D.20198.如图,直线被直线所截,,下列条件中能判定的是()A. B. C. D.9.某体育用品商店一天中卖出某种品牌的运动鞋15双,其中各种尺码的鞋的销售量如表所示:鞋的尺码/cm2323.52424.525销售量/双13362则这15双鞋的尺码组成的一组数据中,众数和中位数分别为()A.24.5,24.5 B.24.5,24 C.24,24 D.23.5,2410.在△ABC中,∠C=90°,,那么∠B的度数为()A.60° B.45° C.30° D.30°或60°二、填空题(本大题共6个小题,每小题3分,共18分)11.已知,且,则的值为__________.12.计算的结果是______.13.如图,数轴上点A表示的数为a,化简:a_____.14.如图1,在△ABC中,∠ACB=90°,BC=2,∠A=30°,点E,F分别是线段BC,AC的中点,连结EF.(1)线段BE与AF的位置关系是,=.(2)如图2,当△CEF绕点C顺时针旋转a时(0°<a<180°),连结AF,BE,(1)中的结论是否仍然成立.如果成立,请证明;如果不成立,请说明理由.(3)如图3,当△CEF绕点C顺时针旋转a时(0°<a<180°),延长FC交AB于点D,如果AD=6﹣2,求旋转角a的度数.15.已知二次函数f(x)=x2-3x+1,那么f(2)=_________.16.在如图的正方形方格纸中,每个小的四边形都是相同的正方形,A,B,C,D都在格点处,AB与CD相交于O,则tan∠BOD的值等于__________.三、解答题(共8题,共72分)17.(8分)如图,AB是圆O的直径,AC是圆O的弦,过点C的切线交AB的延长线于点D,若∠A=∠D,CD=2.(1)求∠A的度数.(2)求图中阴影部分的面积.18.(8分)如图山坡上有一根旗杆AB,旗杆底部B点到山脚C点的距离BC为米,斜坡BC的坡度i=1:.小明在山脚的平地F处测量旗杆的高,点C到测角仪EF的水平距离CF=1米,从E处测得旗杆顶部A的仰角为45°,旗杆底部B的仰角为20°.(1)求坡角∠BCD;(2)求旗杆AB的高度.(参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)19.(8分)如图,AB是⊙O的直径,点C是弧AB的中点,点D是⊙O外一点,AD=AB,AD交⊙O于F,BD交⊙O于E,连接CE交AB于G.(1)证明:∠C=∠D;(2)若∠BEF=140°,求∠C的度数;(3)若EF=2,tanB=3,求CE•CG的值.20.(8分)已知:如图,在菱形ABCD中,F为边BC的中点,DF与对角线AC交于点M,过M作ME⊥CD于点E,∠1=∠1.(1)若CE=1,求BC的长;(1)求证:AM=DF+ME.21.(8分)某街道需要铺设管线的总长为9000,计划由甲队施工,每天完成150.工作一段时间后,因为天气原因,想要40天完工,所以增加了乙队.如图表示剩余管线的长度与甲队工作时间(天)之间的函数关系图象.(1)直接写出点的坐标;(2)求线段所对应的函数解析式,并写出自变量的取值范围;(3)直接写出乙队工作25天后剩余管线的长度.22.(10分)抛物线y=ax2+bx+3(a≠0)经过点A(﹣1,0),B(,0),且与y轴相交于点C.(1)求这条抛物线的表达式;(2)求∠ACB的度数;(3)点D是抛物线上的一动点,是否存在点D,使得tan∠DCB=tan∠ACO.若存在,请求出点D的坐标,若不存在,说明理由.23.(12分)解不等式组,并写出该不等式组的最大整数解.24.有甲、乙两个不透明的布袋,甲袋中有两个完全相同的小球,分别标有数字1和-1;乙袋中有三个完全相同的小球,分别标有数字-1、0和1.小丽先从甲袋中随机取出一个小球,记录下小球上的数字为x;再从乙袋中随机取出一个小球,记录下小球上的数字为y,设点P的坐标为(x,y).(1)请用表格或树状图列出点P所有可能的坐标;(1)求点P在一次函数y=x+1图象上的概率.
参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】
根据函数y=mx2+(m+2)x+m+1的图象与x轴只有一个交点,利用分类讨论的方法可以求得m的值,本题得以解决.【详解】解:∵函数y=mx2+(m+2)x+m+1的图象与x轴只有一个交点,∴当m=0时,y=2x+1,此时y=0时,x=﹣0.5,该函数与x轴有一个交点,当m≠0时,函数y=mx2+(m+2)x+m+1的图象与x轴只有一个交点,则△=(m+2)2﹣4m(m+1)=0,解得,m1=2,m2=﹣2,由上可得,m的值为0或2或﹣2,故选:C.【点睛】本题考查抛物线与x轴的交点,解答本题的关键是明确题意,利用分类讨论的数学思想解答.2、A【解析】
由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状,确定圆锥的母线长和底面半径,从而确定其侧面积.【详解】解:由主视图和左视图为三角形判断出是锥体,由俯视图是圆形可判断出这个几何体应该是圆锥;根据三视图知:该圆锥的母线长为6cm,底面半径为8÷1=4cm,故侧面积=πrl=π×6×4=14πcm1.故选:A.【点睛】此题考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.3、C【解析】
解:因为设小明打字速度为x个/分钟,所以小张打字速度为(x+6)个/分钟,根据关系:小明打120个字所用的时间和小张打180个字所用的时间相等,可列方程得,故选C.【点睛】本题考查列分式方程解应用题,找准题目中的等量关系,难度不大.4、B【解析】
解:∵AC是⊙O的直径,∴∠ABC=90°,∵∠C=50°,∴∠BAC=40°,∵∠ABC的平分线BD交⊙O于点D,∴∠ABD=∠DBC=45°,∴∠CAD=∠DBC=45°,∴∠BAD=∠BAC+∠CAD=40°+45°=85°,故选B.【点睛】本题考查圆周角定理;圆心角、弧、弦的关系.5、A【解析】
已知AB∥CD∥EF,根据平行线分线段成比例定理,对各项进行分析即可.【详解】∵AB∥CD∥EF,∴.故选A.【点睛】本题考查平行线分线段成比例定理,找准对应关系,避免错选其他答案.6、A【解析】
根据已知得出直径是的圆形铁皮,被分成三个圆心角为半径是30cm的扇形,再根据扇形弧长等于圆锥底面圆的周长即可得出答案。【详解】直径是的圆形铁皮,被分成三个圆心角为半径是30cm的扇形假设每个圆锥容器的地面半径为解得故答案选A.【点睛】本题考查扇形弧长的计算方法和扇形围成的圆锥底面圆的半径的计算方法。7、C【解析】
根据各点横坐标数据得出规律,进而得出x+x+…+x;经过观察分析可得每4个数的和为2,把2019个数分为505组,即可得到相应结果.【详解】解:根据平面坐标系结合各点横坐标得出:x1、x2、x3、x4、x5、x6、x7、x8的值分别为:1,﹣1,﹣1,3,3,﹣3,﹣3,5;∴x1+x2+…+x7=﹣1∵x1+x2+x3+x4=1﹣1﹣1+3=2;x5+x6+x7+x8=3﹣3﹣3+5=2;…x97+x98+x99+x100=2…∴x1+x2+…+x2016=2×(2016÷4)=1.而x2017、x2018、x2019的值分别为:1009、﹣1009、﹣1009,∴x2017+x2018+x2019=﹣1009,∴x1+x2+…+x2018+x2019=1﹣1009=﹣1,故选C.【点睛】此题主要考查规律型:点的坐标,解题关键在于找到其规律8、C【解析】试题解析:A、由∠3=∠2=35°,∠1=55°推知∠1≠∠3,故不能判定AB∥CD,故本选项错误;B、由∠3=∠2=45°,∠1=55°推知∠1≠∠3,故不能判定AB∥CD,故本选项错误;C、由∠3=∠2=55°,∠1=55°推知∠1=∠3,故能判定AB∥CD,故本选项正确;D、由∠3=∠2=125°,∠1=55°推知∠1≠∠3,故不能判定AB∥CD,故本选项错误;故选C.9、A【解析】【分析】根据众数和中位数的定义进行求解即可得.【详解】这组数据中,24.5出现了6次,出现的次数最多,所以众数为24.5,这组数据一共有15个数,按从小到大排序后第8个数是24.5,所以中位数为24.5,故选A.【点睛】本题考查了众数、中位数,熟练掌握中位数、众数的定义以及求解方法是解题的关键.10、C【解析】
根据特殊角的三角函数值可知∠A=60°,再根据直角三角形中两锐角互余求出∠B的值即可.【详解】解:∵,∴∠A=60°.∵∠C=90°,∴∠B=90°-60°=30°.点睛:本题考查了特殊角的三角函数值和直角三角形中两锐角互余的性质,熟记特殊角的三角函数值是解答本题的突破点.二、填空题(本大题共6个小题,每小题3分,共18分)11、1【解析】分析:直接利用已知比例式假设出a,b,c的值,进而利用a+b-2c=6,得出答案.详解:∵,∴设a=6x,b=5x,c=4x,∵a+b-2c=6,∴6x+5x-8x=6,解得:x=2,故a=1.故答案为1.点睛:此题主要考查了比例的性质,正确表示出各数是解题关键.12、【解析】
二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并.【详解】.【点睛】考点:二次根式的加减法.13、1.【解析】
直接利用二次根式的性质以及结合数轴得出a的取值范围进而化简即可.【详解】由数轴可得:0<a<1,则a+=a+=a+(1﹣a)=1.故答案为1.【点睛】本题主要考查了二次根式的性质与化简,正确得出a的取值范围是解题的关键.14、(1)互相垂直;;(2)结论仍然成立,证明见解析;(3)135°.【解析】
(1)结合已知角度以及利用锐角三角函数关系求出AB的长,进而得出答案;
(2)利用已知得出△BEC∽△AFC,进而得出∠1=∠2,即可得出答案;
(3)过点D作DH⊥BC于H,则DB=4-(6-2)=2-2,进而得出BH=-1,DH=3-,求出CH=BH,得出∠DCA=45°,进而得出答案.【详解】解:(1)如图1,线段BE与AF的位置关系是互相垂直;
∵∠ACB=90°,BC=2,∠A=30°,
∴AC=2,
∵点E,F分别是线段BC,AC的中点,
∴=;(2))如图2,∵点E,F分别是线段BC,AC的中点,
∴EC=BC,FC=AC,
∴,
∵∠BCE=∠ACF=α,
∴△BEC∽△AFC,
∴,
∴∠1=∠2,
延长BE交AC于点O,交AF于点M
∵∠BOC=∠AOM,∠1=∠2
∴∠BCO=∠AMO=90°
∴BE⊥AF;(3)如图3,∵∠ACB=90°,BC=2,∠A=30°∴AB=4,∠B=60°过点D作DH⊥BC于H∴DB=4-(6-2)=2-2,∴BH=-1,DH=3-,又∵CH=2-(-1)=3-,∴CH=BH,∴∠HCD=45°,∴∠DCA=45°,α=180°-45°=135°.15、-1【解析】
根据二次函数的性质将x=2代入二次函数解析式中即可.【详解】f(x)=x2-3x+1f(2)=22-32+1=-1.故答案为-1.【点睛】本题考查的知识点是二次函数的性质,解题的关键是熟练的掌握二次函数的性质.16、3【解析】试题解析:平移CD到C′D′交AB于O′,如图所示,则∠BO′D′=∠BOD,∴tan∠BOD=tan∠BO′D′,设每个小正方形的边长为a,则O′B=,O′D′=,BD′=3a,作BE⊥O′D′于点E,则BE=,∴O′E=,∴tanBO′E=,∴tan∠BOD=3.考点:解直角三角形.三、解答题(共8题,共72分)17、(1)∠A=30°;(2)【解析】
(1)连接OC,由过点C的切线交AB的延长线于点D,推出OC⊥CD,推出∠OCD=90°,即∠D+∠COD=90°,由OA=OC,推出∠A=∠ACO,由∠A=∠D,推出∠A=∠ACO=∠D再由∠A+∠ACD+∠D=180°﹣90°=90°即可得出.(2)先求∠COD度数及OC长度,即可求出图中阴影部分的面积.【详解】解:(1)连结OC∵CD为⊙O的切线∴OC⊥CD∴∠OCD=90°又∵OA=OC∴∠A=∠ACO又∵∠A=∠D∴∠A=∠ACO=∠D而∠A+∠ACD+∠D=180°﹣90°=90°∴∠A=30°(2)由(1)知:∠D=∠A=30°∴∠COD=60°又∵CD=2∴OC=2∴S阴影=.【点睛】本题考查的知识点是扇形面积的计算及切线的性质,解题的关键是熟练的掌握扇形面积的计算及切线的性质.18、旗杆AB的高度为6.4米.【解析】分析:(1)根据坡度i与坡角α之间的关系为:i=tanα进行计算;(2)根据余弦的概念求出CD,根据正切的概念求出AG、BG,计算即可.本题解析:(1)∵斜坡BC的坡度i=1:,∴tan∠BCD=,∴∠BCD=30°;(2)在Rt△BCD中,CD=BC×cos∠BCD=6×=9,则DF=DC+CF=10(米),∵四边形GDFE为矩形,∴GE=DF=10(米),∵∠AEG=45°,∴AG=DE=10(米),在Rt△BEG中,BG=GE×tan∠BEG=10×0.36=3.6(米),则AB=AG−BG=10−3.6=6.4(米).答:旗杆AB的高度为6.4米。19、(1)见解析;(2)70°;(3)1.【解析】
(1)先根据等边对等角得出∠B=∠D,即可得出结论;(2)先判断出∠DFE=∠B,进而得出∠D=∠DFE,即可求出∠D=70°,即可得出结论;(3)先求出BE=EF=2,进而求AE=6,即可得出AB,进而求出AC,再判断出△ACG∽△ECA,即可得出结论.【详解】(1)∵AB=AD,∴∠B=∠D,∵∠B=∠C,∴∠C=∠D;(2)∵四边形ABEF是圆内接四边形,∴∠DFE=∠B,由(1)知,∠B=∠D,∴∠D=∠DFE,∵∠BEF=140°=∠D+∠DFE=2∠D,∴∠D=70°,由(1)知,∠C=∠D,∴∠C=70°;(3)如图,由(2)知,∠D=∠DFE,∴EF=DE,连接AE,OC,∵AB是⊙O的直径,∴∠AEB=90°,∴BE=DE,∴BE=EF=2,在Rt△ABE中,tanB==3,∴AE=3BE=6,根据勾股定理得,AB=,∴OA=OC=AB=,∵点C是的中点,∴,∴∠AOC=90°,∴AC=OA=2,∵,∴∠CAG=∠CEA,∵∠ACG=∠ECA,∴△ACG∽△ECA,∴,∴CE•CG=AC2=1.【点睛】本题是几何综合题,涉及了圆的性质,圆周角定理,勾股定理,锐角三角函数,相似三角形的判定和性质,圆内接四边形的性质,等腰三角形的性质等,综合性较强,有一定的难度,熟练掌握和灵活运用相关知识是解题的关键.本题中求出BE=2也是解题的关键.20、(1)1;(1)见解析.【解析】试题分析:(1)根据菱形的对边平行可得AB∥CD,再根据两直线平行,内错角相等可得∠1=∠ACD,所以∠ACD=∠1,根据等角对等边的性质可得CM=DM,再根据等腰三角形三线合一的性质可得CE=DE,然后求出CD的长度,即为菱形的边长BC的长度;
(1)先利用“边角边”证明△CEM和△CFM全等,根据全等三角形对应边相等可得ME=MF,延长AB交DF于点G,然后证明∠1=∠G,根据等角对等边的性质可得AM=GM,再利用“角角边”证明△CDF和△BGF全等,根据全等三角形对应边相等可得GF=DF,最后结合图形GM=GF+MF即可得证.试题解析:(1)∵四边形ABCD是菱形,
∴AB∥CD,
∴∠1=∠ACD,
∵∠1=∠1,
∴∠ACD=∠1,
∴MC=MD,
∵ME⊥CD,
∴CD=1CE,
∵CE=1,
∴CD=1,
∴BC=CD=1;
(1)AM=DF+ME证明:如图,∵F为边BC的中点,
∴BF=CF=BC,
∴CF=CE,
在菱形ABCD中,AC平分∠BCD,
∴∠ACB=∠ACD,
在△CEM和△CFM中,
∵,
∴△CEM≌△CFM(SAS),
∴ME=MF,
延长AB交DF的延长线于点G,
∵AB∥CD,
∴∠G=∠1,
∵∠1=∠1,
∴∠1=∠G,
∴AM=MG,
在△CDF和△BGF中,
∵∴△CDF≌△BGF(AAS),
∴GF=DF,
由图形可知,GM=GF+MF,
∴AM=DF+ME.21、(1)(10,7500)(2)直线BC的解析式为y=-250x+10000,自变量x的取值范围为10≤x≤40.(3)1250米.【解析】
(1)由于前面10天由甲单独完成,用总的长度减去已完成的长度即为剩余的长度,从而求出点B的坐标;(2)利用待定系数法求解即可;(3)已队工作25天后,即甲队工作了35天,故当x=35时,函数值即为所求.【详解】(1)9000-150×10=7500.∴点B的坐标为(10,7500)(2)设直线BC的解析式为y=kx+b,依题意,得:解得:∴直线BC的解析式为y=-250x+10000,∵乙队是10天之后加入,40天完成,∴自变量x的取值范围为10≤x≤40.(3)依题意,当x=35时,y=-250×35+10000=1250.∴乙队工作25天后剩余管线的长度是1250米.【点睛】本题考查了一次函数的应用,理解题意观察图象得到有用信息是解题的关键.22、(1)y=﹣2x2+x+3;(2)∠ACB=45°;(3)D点坐标为(1,2)或(4,﹣25).【解析】
(1)设交点式y=a(x+1)(x﹣),展开得到﹣a=3,然后求出a即可得到抛物线解析式;(2)作AE⊥BC于E,如图1,先确定C(0,3),再分别计算出AC=,BC=,接着利用面积法计算出AE=,然后根据三角函数的定义求出∠ACE即可;(3)作BH⊥CD于H,如图2,设H(m,n),证明Rt△BCH∽Rt△ACO,利用相似计算出BH=,CH=,再根据两点间的距离公式得到(m﹣)2+n2=()2,m2+(n﹣3)2=()2,接着通过解方程组得到H(,﹣)或(),然后求出直线CD的解析式,与二次函数联立成方程组,解方程组即可.【详解】(1)设抛物线解析式为y=a(x+1)(x﹣),即y=ax2﹣ax﹣a,∴﹣a=3,解得:a=﹣2,∴抛物线解析式为y=﹣2x2+x+3;(2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 医院专用药师聘用合同范本
- 出俱乐部车位出租协议
- 金融行业精英人才聘用协议
- 养殖场物流服务租赁合同
- 渔业生产设备使用条例
- 五个合伙人之间协议
- 太阳能发电项目授权委托书样本
- 职业技能实验教室租赁合同模板
- 法律服务招标合同管理准则
- 项目部供应商管理流程
- 2024年时事政治热点题库200道含完整答案(必刷)
- 舞蹈疗法在减少压力和焦虑中的作用
- 女性妇科保健知识讲座
- 《电力系统治安反恐防范要求 第3部分:水力发电企业》
- 部编版语文四年级下册第二单元大单元教学设计核心素养目标
- 2024年小学教师听课、评课制度
- 精品解析:河北省衡水市衡水中学2023-2024学年高一上学期期末数学试题(解析版)
- 2023年《铁道概论》考试复习题库附答案(含各题型)
- (电焊工)劳务分包合同
- 陕西省西安市西咸新区2023-2024学年七年级上学期1月期末历史试题
- 北师大版数学三年级下册全册教案教学设计及教学反思
评论
0/150
提交评论