




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
陕西省咸阳秦都区四校联考2024年中考三模数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.某品牌的饮水机接通电源就进入自动程序:开机加热到水温100℃,停止加热,水温开始下降,此时水温(℃)与开机后用时(min)成反比例关系,直至水温降至30℃,饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时,接通电源后,水温y(℃)和时间x(min)的关系如图所示,水温从100℃降到35℃所用的时间是()A.27分钟 B.20分钟 C.13分钟 D.7分钟2.一个圆锥的侧面积是12π,它的底面半径是3,则它的母线长等于()A.2B.3C.4D.63.如图,在平面直角坐标系xOy中,A(2,0),B(0,2),⊙C的圆心为点C(﹣1,0),半径为1.若D是⊙C上的一个动点,线段DA与y轴交于E点,则△ABE面积的最小值是()A.2B.83C.2+24.如图,已知函数与的图象在第二象限交于点,点在的图象上,且点B在以O点为圆心,OA为半径的上,则k的值为A. B. C. D.5.如图,“赵爽弦图”是由四个全等的直角三角形与中间一个小正方形拼成的一个大正方形,大正方形与小正方形的边长之比是2∶1,若随机在大正方形及其内部区域投针,则针孔扎到小正方形(阴影部分)的概率是()A.0.2 B.0.25 C.0.4 D.0.56.已知抛物线的图像与轴交于、两点(点在点的右侧),与轴交于点.给出下列结论:①当的条件下,无论取何值,点是一个定点;②当的条件下,无论取何值,抛物线的对称轴一定位于轴的左侧;③的最小值不大于;④若,则.其中正确的结论有()个.A.1个 B.2个 C.3个 D.4个7.(3分)学校要组织足球比赛.赛制为单循环形式(每两队之间赛一场).计划安排21场比赛,应邀请多少个球队参赛?设邀请x个球队参赛.根据题意,下面所列方程正确的是()A.B.C.D.8.如图,两个转盘A,B都被分成了3个全等的扇形,在每一扇形内均标有不同的自然数,固定指针,同时转动转盘A,B,两个转盘停止后观察两个指针所指扇形内的数字(若指针停在扇形的边线上,当作指向上边的扇形).小明每转动一次就记录数据,并算出两数之和,其中“和为7”的频数及频率如下表:转盘总次数10203050100150180240330450“和为7”出现频数27101630465981110150“和为7”出现频率0.200.350.330.320.300.300.330.340.330.33如果实验继续进行下去,根据上表数据,出现“和为7”的频率将稳定在它的概率附近,估计出现“和为7”的概率为()A.0.33 B.0.34 C.0.20 D.0.359.“辽宁号”航母是中国海军航空母舰的首舰,标准排水量57000吨,满载排水量67500吨,数据67500用科学记数法表示为A.675×102 B.67.5×102 C.6.75×104 D.6.75×10510.如图,AC是⊙O的直径,弦BD⊥AO于E,连接BC,过点O作OF⊥BC于F,若BD=8cm,AE=2cm,则OF的长度是()A.3cm B.cm C.2.5cm D.cm11.下列说法正确的是()A.某工厂质检员检测某批灯泡的使用寿命采用普查法B.已知一组数据1,a,4,4,9,它的平均数是4,则这组数据的方差是7.6C.12名同学中有两人的出生月份相同是必然事件D.在“等边三角形、正方形、等腰梯形、矩形、正六边形、正五边形”中,任取其中一个图形,恰好既是中心对称图形,又是轴对称图形的概率是12.计算1+2+22+23+…+22010的结果是()A.22011–1 B.22011+1C. D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.反比例函数的图象经过点(﹣3,2),则k的值是_____.当x大于0时,y随x的增大而_____.(填增大或减小)14.已知二次函数f(x)=x2-3x+1,那么f(2)=_________.15.若A(﹣3,y1),B(﹣2,y2),C(1,y3)三点都在y=的图象上,则yl,y2,y3的大小关系是_____.(用“<”号填空)16.因式分解:4x2y﹣9y3=_____.17.可燃冰是一种新型能源,它的密度很小,可燃冰的质量仅为.数字0.00092用科学记数法表示是__________.18.如图,直线l1∥l2,则∠1+∠2=____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)观察与思考:阅读下列材料,并解决后面的问题在锐角△ABC中,∠A、∠B、∠C的对边分别是a、b、c,过A作AD⊥BC于D(如图(1)),则sinB=,sinC=,即AD=csinB,AD=bsinC,于是csinB=bsinC,即,同理有:,,所以.即:在一个三角形中,各边和它所对角的正弦的比相等在锐角三角形中,若已知三个元素(至少有一条边),运用上述结论和有关定理就可以求出其余三个未知元素.根据上述材料,完成下列各题.(1)如图(2),△ABC中,∠B=45°,∠C=75°,BC=60,则∠A=;AC=;(2)自从去年日本政府自主自导“钓鱼岛国有化”闹剧以来,我国政府灵活应对,现如今已对钓鱼岛执行常态化巡逻.某次巡逻中,如图(3),我渔政204船在C处测得A在我渔政船的北偏西30°的方向上,随后以40海里/时的速度按北偏东30°的方向航行,半小时后到达B处,此时又测得钓鱼岛A在的北偏西75°的方向上,求此时渔政204船距钓鱼岛A的距离AB.(结果精确到0.01,≈2.449)20.(6分)已知AC=DC,AC⊥DC,直线MN经过点A,作DB⊥MN,垂足为B,连接CB.(1)直接写出∠D与∠MAC之间的数量关系;(2)①如图1,猜想AB,BD与BC之间的数量关系,并说明理由;②如图2,直接写出AB,BD与BC之间的数量关系;(3)在MN绕点A旋转的过程中,当∠BCD=30°,BD=时,直接写出BC的值.21.(6分)如图,轮船从点A处出发,先航行至位于点A的南偏西15°且点A相距100km的点B处,再航行至位于点A的南偏东75°且与点B相距200km的点C处.(1)求点C与点A的距离(精确到1km);(2)确定点C相对于点A的方向.(参考数据:2≈1.41422.(8分)如图所示,在△ABC中,AB=CB,以BC为直径的⊙O交AC于点E,过点E作⊙O的切线交AB于点F.(1)求证:EF⊥AB;(2)若AC=16,⊙O的半径是5,求EF的长.23.(8分)某公司对用户满意度进行问卷调查,将连续6天内每天收回的问卷数进行统计,绘制成如图所示的统计图.已知从左到右各矩形的高度比为2:3:4:6:4:1.第3天的频数是2.请你回答:(1)收回问卷最多的一天共收到问卷_________份;(2)本次活动共收回问卷共_________份;(3)市场部对收回的问卷统一进行了编号,通过电脑程序随机抽选一个编号,抽到问卷是第4天收回的概率是多少?(4)按照(3)中的模式随机抽选若干编号,确定幸运用户发放纪念奖,第4天和第6天分别有10份和2份获奖,那么你认为这两组中哪个组获奖率较高?为什么?24.(10分)化简求值:,其中x是不等式组的整数解.25.(10分)如图,点A、B在⊙O上,点O是⊙O的圆心,请你只用无刻度的直尺,分别画出图①和图②中∠A的余角.(1)图①中,点C在⊙O上;(2)图②中,点C在⊙O内;26.(12分)小明和小亮玩一个游戏:取三张大小、质地都相同的卡片,上面分别标有数字2、3、4(背面完全相同),现将标有数字的一面朝下.小明从中任意抽取一张,记下数字后放回洗匀,然后小亮从中任意抽取一张,计算小明和小亮抽得的两个数字之和.请你用画树状图或列表的方法,求出这两数和为6的概率.如果和为奇数,则小明胜;若和为偶数,则小亮胜.你认为这个游戏规则对双方公平吗?做出判断,并说明理由.27.(12分)如图,AC⊥BD,DE交AC于E,AB=DE,∠A=∠D.求证:AC=AE+BC.
参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、C【解析】
先利用待定系数法求函数解析式,然后将y=35代入,从而求解.【详解】解:设反比例函数关系式为:,将(7,100)代入,得k=700,∴,将y=35代入,解得;∴水温从100℃降到35℃所用的时间是:20-7=13,故选C.【点睛】本题考查反比例函数的应用,利用数形结合思想解题是关键.2、C【解析】设母线长为R,底面半径是3cm,则底面周长=6π,侧面积=3πR=12π,
∴R=4cm.故选C.3、C【解析】当⊙C与AD相切时,△ABE面积最大,连接CD,则∠CDA=90°,∵A(2,0),B(0,2),⊙C的圆心为点C(-1,0),半径为1,∴CD=1,AC=2+1=3,∴AD=AC2-CD∵∠AOE=∠ADC=90°,∠EAO=∠CAD,∴△AOE∽△ADC,∴OA即222=∴BE=OB+OE=2+2∴S△ABE=1BE?OA=12×(2+22故答案为C.4、A【解析】
由题意,因为与反比例函数都是关于直线对称,推出A与B关于直线对称,推出,可得,求出m即可解决问题;【详解】函数与的图象在第二象限交于点,点与反比例函数都是关于直线对称,与B关于直线对称,,,点故选:A.【点睛】本题考查反比例函数与一次函数的交点问题,反比例函数的图像与性质,圆的对称性及轴对称的性质.解题的关键是灵活运用所学知识解决问题,本题的突破点是发现A,B关于直线对称.5、B【解析】
设大正方形边长为2,则小正方形边长为1,所以大正方形面积为4,小正方形面积为1,则针孔扎到小正方形(阴影部分)的概率是0.1.【详解】解:设大正方形边长为2,则小正方形边长为1,因为面积比是相似比的平方,
所以大正方形面积为4,小正方形面积为1,
则针孔扎到小正方形(阴影部分)的概率是;故选:B.【点睛】本题考查了概率公式:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率.6、C【解析】
①利用抛物线两点式方程进行判断;
②根据根的判别式来确定a的取值范围,然后根据对称轴方程进行计算;
③利用顶点坐标公式进行解答;
④利用两点间的距离公式进行解答.【详解】①y=ax1+(1-a)x-1=(x-1)(ax+1).则该抛物线恒过点A(1,0).故①正确;
②∵y=ax1+(1-a)x-1(a>0)的图象与x轴有1个交点,
∴△=(1-a)1+8a=(a+1)1>0,
∴a≠-1.
∴该抛物线的对称轴为:x=,无法判定的正负.
故②不一定正确;
③根据抛物线与y轴交于(0,-1)可知,y的最小值不大于-1,故③正确;
④∵A(1,0),B(-,0),C(0,-1),
∴当AB=AC时,,解得:a=,故④正确.
综上所述,正确的结论有3个.
故选C.【点睛】考查了二次函数与x轴的交点及其性质.(1).抛物线是轴对称图形.对称轴为直线x=-,对称轴与抛物线唯一的交点为抛物线的顶点P;特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0);(1).抛物线有一个顶点P,坐标为P(-b/1a,(4ac-b1)/4a),当-=0,〔即b=0〕时,P在y轴上;当Δ=b1-4ac=0时,P在x轴上;(3).二次项系数a决定抛物线的开口方向和大小;当a>0时,抛物线开口向上;当a<0时,抛物线开口向下;|a|越大,则抛物线的开口越小.(4).一次项系数b和二次项系数a共同决定对称轴的位置;当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;(5).常数项c决定抛物线与y轴交点;抛物线与y轴交于(0,c);(6).抛物线与x轴交点个数Δ=b1-4ac>0时,抛物线与x轴有1个交点;Δ=b1-4ac=0时,抛物线与x轴有1个交点;Δ=b1-4ac<0时,抛物线与x轴没有交点.X的取值是虚数(x=-b±√b1-4ac乘上虚数i,整个式子除以1a);当a>0时,函数在x=-b/1a处取得最小值f(-b/1a)=〔4ac-b1〕/4a;在{x|x<-b/1a}上是减函数,在{x|x>-b/1a}上是增函数;抛物线的开口向上;函数的值域是{y|y≥4ac-b1/4a}相反不变;当b=0时,抛物线的对称轴是y轴,这时,函数是偶函数,解析式变形为y=ax1+c(a≠0).7、B.【解析】试题分析:设有x个队,每个队都要赛(x﹣1)场,但两队之间只有一场比赛,由题意得:,故选B.考点:由实际问题抽象出一元二次方程.8、A【解析】
根据上表数据,出现“和为7”的频率将稳定在它的概率附近,估计出现“和为7”的概率即可.【详解】由表中数据可知,出现“和为7”的概率为0.33.故选A.【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.9、C【解析】
根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.在确定n的值时,看该数是大于或等于1还是小于1.当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,-n为它第一个有效数字前0的个数(含小数点前的1个0).【详解】67500一共5位,从而67500=6.75×104,故选C.10、D【解析】分析:根据垂径定理得出OE的长,进而利用勾股定理得出BC的长,再利用相似三角形的判定和性质解答即可.详解:连接OB,∵AC是⊙O的直径,弦BD⊥AO于E,BD=1cm,AE=2cm.在Rt△OEB中,OE2+BE2=OB2,即OE2+42=(OE+2)2解得:OE=3,∴OB=3+2=5,∴EC=5+3=1.在Rt△EBC中,BC=.∵OF⊥BC,∴∠OFC=∠CEB=90°.∵∠C=∠C,∴△OFC∽△BEC,∴,即,解得:OF=.故选D.点睛:本题考查了垂径定理,关键是根据垂径定理得出OE的长.11、B【解析】
分别用方差、全面调查与抽样调查、随机事件及概率的知识逐一进行判断即可得到答案.【详解】A.某工厂质检员检测某批灯泡的使用寿命时,检测范围比较大,因此适宜采用抽样调查的方法,故本选项错误;B.根据平均数是4求得a的值为2,则方差为[(1−4)2+(2−4)2+(4−4)2+(4−4)2+(9−4)2]=7.6,故本选项正确;C.12个同学的生日月份可能互不相同,故本事件是随机事件,故错误;D.在“等边三角形、正方形、等腰梯形、矩形、正六边形、正五边形”六个图形中有3个既是轴对称图形,又是中心对称图形,所以,恰好既是中心对称图形,又是轴对称图形的概率是,故本选项错误.故答案选B.【点睛】本题考查的知识点是概率公式、全面调查与抽样调查、方差及随机事件,解题的关键是熟练的掌握概率公式、全面调查与抽样调查、方差及随机事件.12、A【解析】
可设其和为S,则2S=2+22+23+24+…+22010+22011,两式相减可得答案.【详解】设S=1+2+22+23+…+22010①则2S=2+22+23+…+22010+22011②②-①得S=22011-1.故选A.【点睛】本题考查了因式分解的应用;设出和为S,并求出2S进行做差求解是解题关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、﹣6增大【解析】
∵反比例函数的图象经过点(﹣3,2),∴2=,即k=2×(﹣3)=﹣6,∴k<0,则y随x的增大而增大.故答案为﹣6;增大.【点睛】本题考查用待定系数法求反函数解析式与反比例函数的性质:(1)当k>0时,函数图象在一,三象限,在每个象限内,y随x的增大而减小;(2)当k<0时,函数图象在二,四象限,在每个象限内,y随x的增大而增大.14、-1【解析】
根据二次函数的性质将x=2代入二次函数解析式中即可.【详解】f(x)=x2-3x+1f(2)=22-32+1=-1.故答案为-1.【点睛】本题考查的知识点是二次函数的性质,解题的关键是熟练的掌握二次函数的性质.15、y3<y1<y1【解析】
根据反比例函数的性质k<0时,在每个象限,y随x的增大而增大,进行比较即可.【详解】解:k=-1<0,∴在每个象限,y随x的增大而增大,∵-3<-1<0,∴0<y1<y1.又∵1>0∴y3<0∴y3<y1<y1故答案为:y3<y1<y1【点睛】本题考查的是反比例函数的性质,理解性质:当k>0时,在每个象限,y随x的增大而减小,k<0时,在每个象限,y随x的增大而增大是解题的关键.16、y(2x+3y)(2x-3y)【解析】
直接提取公因式y,再利用平方差公式分解因式即可.【详解】4x2y﹣9y3=y(4x2-9y2=x(2x+3y)(2x-3y).【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确运用公式是解题关键.17、9.2×10﹣1.【解析】
根据科学记数法的正确表示为,由题意可得0.00092用科学记数法表示是9.2×10﹣1.【详解】根据科学记数法的正确表示形式可得:0.00092用科学记数法表示是9.2×10﹣1.故答案为:9.2×10﹣1.【点睛】本题主要考查科学记数法的正确表现形式,解决本题的关键是要熟练掌握科学记数法的正确表现形式.18、30°【解析】
分别过A、B作l1的平行线AC和BD,则可知AC∥BD∥l1∥l2,再利用平行线的性质求得答案.【详解】如图,分别过A、B作l1的平行线AC和BD,∵l1∥l2,∴AC∥BD∥l1∥l2,∴∠1=∠EAC,∠2=∠FBD,∠CAB+∠DBA=180°,∵∠EAB+∠FBA=125°+85°=210°,∴∠EAC+∠CAB+∠DBA+∠FBD=210°,即∠1+∠2+180°=210°,∴∠1+∠2=30°,故答案为30°.【点睛】本题主要考查平行线的性质和判定,掌握平行线的性质和判定是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)60,20;(2)渔政船距海岛A的距离AB约为24.49海里.【解析】
(1)利用题目总结的正弦定理,将有关数据代入求解即可;(2)在△ABC中,分别求得BC的长和三个内角的度数,利用题目中总结的正弦定理求AC的长即可.【详解】(1)由正玄定理得:∠A=60°,AC=20;故答案为60°,20;(2)如图:依题意,得BC=40×0.5=20(海里).∵CD∥BE,∴∠DCB+∠CBE=180°.∵∠DCB=30°,∴∠CBE=150°.∵∠ABE=75°,∴∠ABC=75°,∴∠A=45°.在△ABC中,,即,解得AB=10≈24.49(海里).答:渔政船距海岛A的距离AB约为24.49海里.【点睛】本题考查了方向角的知识,更重要的是考查了同学们的阅读理解能力,通过材料总结出学生们没有接触的知识,并根据此知识点解决相关的问题,是近几年中考的高频考点.20、(1)相等或互补;(2)①BD+AB=BC;②AB﹣BD=BC;(3)BC=或.【解析】
(1)分为点C,D在直线MN同侧和点C,D在直线MN两侧,两种情况讨论即可解题,(2)①作辅助线,证明△BCD≌△FCA,得BC=FC,∠BCD=∠FCA,∠FCB=90°,即△BFC是等腰直角三角形,即可解题,②在射线AM上截取AF=BD,连接CF,证明△BCD≌△FCA,得△BFC是等腰直角三角形,即可解题,(3)分为当点C,D在直线MN同侧,当点C,D在直线MN两侧,两种情况解题即可,见详解.【详解】解:(1)相等或互补;理由:当点C,D在直线MN同侧时,如图1,∵AC⊥CD,BD⊥MN,∴∠ACD=∠BDC=90°,在四边形ABDC中,∠BAD+∠D=360°﹣∠ACD﹣∠BDC=180°,∵∠BAC+∠CAM=180°,∴∠CAM=∠D;当点C,D在直线MN两侧时,如图2,∵∠ACD=∠ABD=90°,∠AEC=∠BED,∴∠CAB=∠D,∵∠CAB+∠CAM=180°,∴∠CAM+∠D=180°,即:∠D与∠MAC之间的数量是相等或互补;(2)①猜想:BD+AB=BC如图3,在射线AM上截取AF=BD,连接CF.又∵∠D=∠FAC,CD=AC∴△BCD≌△FCA,∴BC=FC,∠BCD=∠FCA∵AC⊥CD∴∠ACD=90°即∠ACB+∠BCD=90°∴∠ACB+∠FCA=90°即∠FCB=90°∴BF=∵AF+AB=BF=∴BD+AB=;②如图2,在射线AM上截取AF=BD,连接CF,又∵∠D=∠FAC,CD=AC∴△BCD≌△FCA,∴BC=FC,∠BCD=∠FCA∵AC⊥CD∴∠ACD=90°即∠ACB+∠BCD=90°∴∠ACB+∠FCA=90°即∠FCB=90°∴BF=∵AB﹣AF=BF=∴AB﹣BD=;(3)①当点C,D在直线MN同侧时,如图3﹣1,由(2)①知,△ACF≌△DCB,∴CF=BC,∠ACF=∠ACD=90°,∴∠ABC=45°,∵∠ABD=90°,∴∠CBD=45°,过点D作DG⊥BC于G,在Rt△BDG中,∠CBD=45°,BD=,∴DG=BG=1,在Rt△CGD中,∠BCD=30°,∴CG=DG=,∴BC=CG+BG=+1,②当点C,D在直线MN两侧时,如图2﹣1,过点D作DG⊥CB交CB的延长线于G,同①的方法得,BG=1,CG=,∴BC=CG﹣BG=﹣1即:BC=或,【点睛】本题考查了三角形中的边长关系,等腰直角三角形的性质,中等难度,分类讨论与作辅助线是解题关键.21、(1)173;(2)点C位于点A的南偏东75°方向.【解析】试题分析:(1)作辅助线,过点A作AD⊥BC于点D,构造直角三角形,解直角三角形即可.(2)利用勾股定理的逆定理,判定△ABC为直角三角形;然后根据方向角的定义,即可确定点C相对于点A的方向.试题解析:解:(1)如答图,过点A作AD⊥BC于点D.由图得,∠ABC=75°﹣10°=60°.在Rt△ABD中,∵∠ABC=60°,AB=100,∴BD=50,AD=503.∴CD=BC﹣BD=200﹣50=1.在Rt△ACD中,由勾股定理得:AC=AD答:点C与点A的距离约为173km.(2)在△ABC中,∵AB2+AC2=1002+(1003)2=40000,BC2=2002=40000,∴AB2+AC2=BC2.∴∠BAC=90°.∴∠CAF=∠BAC﹣∠BAF=90°﹣15°=75°.答:点C位于点A的南偏东75°方向.考点:1.解直角三角形的应用(方向角问题);2.锐角三角函数定义;3.特殊角的三角函数值;4.勾股定理和逆定理.22、(1)证明见解析;(2)4.8.【解析】
(1)连结OE,根据等腰三角形的性质可得∠OEC=∠OCA、∠A=∠OCA,即可得∠A=∠OEC,由同位角相等,两直线平行即可判定OE∥AB,又因EF是⊙O的切线,根据切线的性质可得EF⊥OE,由此即可证得EF⊥AB;(2)连结BE,根据直径所对的圆周角为直角可得,∠BEC=90°,再由等腰三角形三线合一的性质求得AE=EC=8,在Rt△BEC中,根据勾股定理求的BE=6,再由△ABE的面积=△BEC的面积,根据直角三角形面积的两种表示法可得8×6=10×EF,由此即可求得EF=4.8.【详解】(1)证明:连结OE.∵OE=OC,∴∠OEC=∠OCA,∵AB=CB,∴∠A=∠OCA,∴∠A=∠OEC,∴OE∥AB,∵EF是⊙O的切线,∴EF⊥OE,∴EF⊥AB.(2)连结BE.∵BC是⊙O的直径,∴∠BEC=90°,又AB=CB,AC=16,∴AE=EC=AC=8,∵AB=CB=2BO=10,∴BE=,又△ABE的面积=△BEC的面积,即8×6=10×EF,∴EF=4.8.【点睛】本题考查了切线的性质定理、圆周角定理、等腰三角形的性质与判定、勾股定理及直角三角形的两种面积求法等知识点,熟练运算这些知识是解决问题的关键.23、1860分【解析】分析:(1)观察图形可知,第4天收到问卷最多,用矩形的高度比
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030年中国不锈钢焊管市场发展动态及前景趋势研究报告
- 2025年中国数显式工程陶瓷抗压强度测试仪数据监测报告
- 2025年中国隧道式电阻炉市场调查研究报告
- 肇庆市实验中学高中生物一:从生物圈到细胞习题课
- 2025至2031年中国素色饭碟行业投资前景及策略咨询研究报告
- 2025至2031年中国纸包装制品行业投资前景及策略咨询研究报告
- 新疆理工学院《工程生态学》2023-2024学年第二学期期末试卷
- 2025至2031年中国移门轮行业投资前景及策略咨询研究报告
- 新疆政法学院《德语文学名著导读》2023-2024学年第一学期期末试卷
- 2025至2031年中国等孔隙冷却塔立体填料行业投资前景及策略咨询研究报告
- 新版《医疗器械经营质量管理规范》(2024)培训试题及答案
- 大数据与人工智能营销(南昌大学)知到智慧树章节答案
- 健合集团笔试在线测评题
- 2024届江苏省苏锡常镇四市高三二模地理试题含答案解析
- 99S203 消防水泵接合器安装图集
- 行列式概念和性质
- (新版)农网配电营业工(综合柜员)资格考试题库(含答案)
- (完整版)市政道路综合管廊施工方案
- 生产要素国际流动概论
- 叉车日常使用状况点检记录表(日常检查记录)
- 数学物理方法第四版(梁昆淼)期末总结
评论
0/150
提交评论