版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
辽宁省丹东市第七中学2025届数学九上期末综合测试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.半径为6的圆上有一段长度为1.5的弧,则此弧所对的圆心角为()A. B. C. D.2.如图,要证明平行四边形ABCD为正方形,那么我们需要在四边形ABCD是平行四边形的基础上,进一步证明()A.AB=AD且AC⊥BD B.AB=AD且AC=BD C.∠A=∠B且AC=BD D.AC和BD互相垂直平分3.分别以等边三角形的三个顶点为圆心,以边长为半径画弧,得到封闭图形就是莱洛三角形,如图,已知等边,,则该莱洛三角形的面积为()A. B. C. D.4.下图是甲、乙两人2019年上半年每月电费支出的统计,则他们2019年上半年月电费支出的方差和的大小关系是()A.> B.= C.< D.无法确定5.某河堤横断面如图所示,堤高米,迎水坡的坡比是(坡比是坡面的铅直高度与水平宽度之比),则的长是()A.米 B.20米 C.米 D.30米6.如图所示的几何体是由一些正方体组合而成的立体图形,则这个几何体的俯视图是A. B. C. D.7.抛物线的顶点在()A.x轴上 B.y轴上 C.第三象限 D.第四象限8.如图,等腰与等腰是以点为位似中心的位似图形,位似比为,则点的坐标是()A. B. C. D.9.抛物线的顶点坐标是()A. B. C. D.10.如图是某货站传送货物的机器的侧面示意图.,原传送带与地面的夹角为,为了缩短货物传送距离,工人师傅欲增大传送带与地面的夹角,使其由改为,原传送带长为.则新传送带的长度为()A. B. C. D.无法计算二、填空题(每小题3分,共24分)11.已知是方程的根,则代数式的值为__________.12.圆锥的底面半径为6,母线长为10,则圆锥的侧面积为__________.13.小丽微信支付密码是六位数(每一位可显示0~9),由于她忘记了密码的末位数字,则小丽能一次支付成功的概率是__________.14.若正六边形的内切圆半径为2,则其外接圆半径为__________.15.已知A(0,3),B(2,3)是抛物线上两点,该抛物线的顶点坐标是_________.16.已知:如图,△ABC的面积为12,点D、E分别是边AB、AC的中点,则四边形BCED的面积为_____.17.在一个不透明的布袋里装有若干个只有颜色不同的红球和白球,其中有3个红球,且从布袋中随机摸出1个球是红球的概率是三分之一,则白球的个数是______18.如图,直线y=-x+b与双曲线分别相交于点A,B,C,D,已知点A的坐标为(-1,4),且AB:CD=5:2,则m=_________.三、解答题(共66分)19.(10分)如图,△ABC是等边三角形,AO⊥BC,垂足为点O,⊙O与AC相切于点D,BE⊥AB交AC的延长线于点E,与⊙O相交于G,F两点.(1)求证:AB与⊙O相切;(2)若AB=4,求线段GF的长.20.(6分)如图,已知A(-4,2)、B(n,-4)是一次函数的图象与反比例函数的图象的两个交点.(1)求此反比例函数和一次函数的解析式;(2)求△AOB的面积;21.(6分)学校打算用长米的篱笆围城一个长方形的生物园饲养小兔,生物园的一面靠在长为米的墙上(如图).(1)若生物园的面积为平方米,求生物园的长和宽;(2)能否围城面积为平方米的生物园?若能,求出长和宽;若不能,请说明理由.22.(8分)八年级一班开展了“读一本好书”的活动,班委会对学生阅读书籍的情况进行了问卷调查,问卷设置了“小说”“戏剧”“散文”“其他”四个类型,每位同学仅选一项,根据调查结果绘制了不完整的频数分布表和扇形统计图.类别频数(人数)频率小说0.5戏剧4散文100.25其他6合计1根据图表提供的信息,解答下列问题:(1)八年级一班有多少名学生?(2)请补全频数分布表,并求出扇形统计图中“其他”类所占的百分比;(3)在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从以上四位同学中任意选出2名同学参加学校的戏剧兴趣小组,请用画树状图或列表法的方法,求选取的2人恰好是乙和丙的概率.23.(8分)已知关于x的方程2x2﹣17x+m=0的一个根是1,求它的另一个根及m的值.24.(8分)已知二次函数y=x2+2mx+(m2﹣1)(m是常数).(1)若它的图象与x轴交于两点A,B,求线段AB的长;(2)若它的图象的顶点在直线y=x+3上,求m的值.25.(10分)解方程:(1)x2-4x+1=0
(2)x2+3x-4=026.(10分)如图,在矩形纸片中,已知,,点在边上移动,连接,将多边形沿折叠,得到多边形,点、的对应点分别为点,.(1)连接.则______,______°;(2)当恰好经过点时,求线段的长;(3)在点从点移动到点的过程中,求点移动的路径长.
参考答案一、选择题(每小题3分,共30分)1、B【分析】根据弧长公式,即可求解.【详解】∵,∴,解得:n=75,故选B.【点睛】本题主要考查弧长公式,掌握是解题的关键.2、B【解析】解:A.根据有一组邻边相等的平行四边形是菱形,或者对角线互相垂直的平行四边形是菱形,所以不能判断平行四边形ABCD是正方形;B.根据邻边相等的平行四边形是菱形,对角线相等的平行四边形为矩形,所以能判断四边形ABCD是正方形;C.根据一组邻角相等的平行四边形是矩形,对角线相等的平行四边形也是矩形,即只能证明四边形ABCD是矩形,不能判断四边形ABCD是正方形;D.根据对角线互相垂直的平行四边形是菱形,对角线互相平分的四边形是平行四边形,所以不能判断四边形ABCD是正方形.故选B.3、D【分析】莱洛三角形的面积为三个扇形的面积相加,再减去两个等边三角形的面积,代入已知数据计算即可.【详解】解:如图所示,作AD⊥BC交BC于点D,∵△ABC是等边三角形,∴AB=AC=BC=2,∠BAC=∠ABC=∠ACB=60°∵AD⊥BC,∴BD=CD=1,AD=,∴,∴莱洛三角形的面积为故答案为D.【点睛】本题考查了不规则图形的面积的求解,能够得出“莱洛三角形的面积为三个扇形的面积相加,再减去两个等边三角形的面积”是解题的关键.4、A【解析】方差的大小反映数据的波动大小,方差越小,数据越稳定,根据题意可判断乙的数据比甲稳定,所以乙的方差小于甲.【详解】解:由题意可知,乙的数据比甲稳定,所以>故选:A【点睛】本题考查方差的定义与意义,方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.5、A【分析】由堤高米,迎水坡AB的坡比,根据坡度的定义,即可求得AC的长.【详解】∵迎水坡AB的坡比,∴,∵堤高米,∴(米).故选A.【点睛】本题考查了解直角三角形的应用-坡度坡角问题,掌握坡比的概念是解题的关键6、A【解析】从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图.根据图中正方体摆放的位置,从上面看,下面一行左面是横放2个正方体,上面一行右面是一个正方体.故选A.7、B【分析】将解析式化为顶点式即可得到答案.【详解】=2(x+0)²-4得:对称轴为y轴,则顶点坐标为(0,-4),在y轴上,故选B.8、A【分析】根据位似比为,可得,从而得:CE=DE=12,进而求得OC=6,即可求解.【详解】∵等腰与等腰是以点为位似中心的位似图形,位似比为,∴,即:DE=3BC=12,∴CE=DE=12,∴,解得:OC=6,∴OE=6+12=18,∴点的坐标是:.故选A.【点睛】本题主要考查位似图形的性质,掌握位似图形的位似比等于相似比,是解题的关键.9、A【分析】根据二次函数的性质,利用顶点式即可得出顶点坐标.【详解】解:∵抛物线,
∴抛物线的顶点坐标是:(1,3),
故选:A.【点睛】本题主要考查了利用二次函数顶点式求顶点坐标.能根据二次函数的顶点式找出抛物线的对称轴及顶点坐标是解题的关键.10、B【分析】根据已知条件,在中,求出AD的长,再在中求出AC的值.【详解】,,=8即即故选B.【点睛】本题考查了解直角三角形的应用,熟练掌握特殊角的三角函数值是解题的关键.二、填空题(每小题3分,共24分)11、1【分析】把代入已知方程,并求得,然后将其整体代入所求的代数式进行求值即可.【详解】解:把代入,得,解得,所以.故答案是:1.【点睛】本题考查一元二次方程的解以及代数式求值,注意解题时运用整体代入思想.12、【分析】圆锥的侧面积=×底面半径×母线长,把相应数值代入即可求解.【详解】圆锥的侧面积=×6×10=60cm1.故答案为.【点睛】本题考查圆锥侧面积公式的运用,掌握公式是关键.13、【分析】根据题意可知密码的末位数字一共有10种等可能的结果,小丽能一次支付成功的只有1种情况,直接利用概率公式求解即可.【详解】解:∵密码的末位数字一共有10种等可能的结果,小丽能一次支付成功的只有1种情况,∴小丽能一次支付成功的概率是.故答案为:.【点睛】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.14、【分析】根据题意画出草图,可得OG=2,,因此利用三角函数便可计算的外接圆半径OA.【详解】解:如图,连接、,作于;则,∵六边形正六边形,∴是等边三角形,∴,∴,∴正六边形的内切圆半径为2,则其外接圆半径为.故答案为.【点睛】本题主要考查多边形的内接圆和外接圆,关键在于根据题意画出草图,再根据三角函数求解,这是多边形问题的解题思路.15、(1,4).【解析】试题分析:把A(0,3),B(2,3)代入抛物线可得b=2,c=3,所以=,即可得该抛物线的顶点坐标是(1,4).考点:抛物线的顶点.16、1【解析】设四边形BCED的面积为x,则S△ADE=12﹣x,由题意知DE∥BC且DE=BC,从而得,据此建立关于x的方程,解之可得.【详解】设四边形BCED的面积为x,则S△ADE=12﹣x,∵点D、E分别是边AB、AC的中点,∴DE是△ABC的中位线,∴DE∥BC,且DE=BC,∴△ADE∽△ABC,则=,即,解得:x=1,即四边形BCED的面积为1,故答案为1.【点睛】本题主要考查相似三角形的判定与性质,解题的关键是掌握中位线定理及相似三角形的面积比等于相似比的平方的性质.17、6【分析】设白球的个数是x个,根据列出算式,求出x的值即可.【详解】解:设白球的个数是x个,根据题意得:解得:x=6.故答案为6.【点睛】本题考查了概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.18、【解析】如图由题意:k=﹣4,设直线AB交x轴于F,交y轴于E.根据反比例函数y和直线AB组成的图形关于直线y=x对称,求出E、F、C、D的坐标即可.【详解】如图由题意:k=﹣4,设直线AB交x轴于F,交y轴于E.∵反比例函数y和直线AB组成的图形关于直线y=x对称,A(﹣1,4),∴B(4,﹣1),∴直线AB的解析式为y=﹣x+3,∴E(0,3),F(3,0),∴AB=5,EF=3.∵AB:CD=5:2,∴CD=2,∴CE=DF.设C(x,-x+3),∴CE=,解得:x=(负数舍去),∴x=,-x+3=,∴C(),∴m==.故答案为:.【点睛】本题考查了反比例函数与一次函数的交点问题,解题的关键是灵活运用所学知识解决问题,学会利用轴对称的性质解决问题,属于中考常考题型.三、解答题(共66分)19、(1)见解析;(2)2.【解析】试题分析:(1)过点O作OM⊥AB,垂足是M.证明OM等于圆的半径即可;
(2)过点O作ON⊥BE,垂足是N,连接OF,由垂径定理得出NG=NF=GF.证出四边形OMBN是矩形,在利用三角函数求得OM和的长,则和即可求得,在中利用勾股定理求得,即可得出的长.试题解析:如图,∵⊙O与AC相切于点D,∴OD⊥AC,∴∠ADO=∠AMO=90°.∵△ABC是等边三角形,AO⊥BC,∴∠DAO=∠MAO,∴OM=OD.∴AB与⊙O相切;如图,过点O作ON⊥BE,垂足是N,连接OF,则NG=NF=GF.∵O是BC的中点,∴OB=2.在Rt△OBM中,∠MBO=60°,∴∠BOM=30°,∴BM=BO=1,∴OM=.∵BE⊥AB,∴四边形OMBN是矩形,∴ON=BM=1.∵OF=OM=,由勾股定理得NF==,∴GF=2NF=2.20、(1)y=-;y=-x-2;(2)6【分析】(1)先把点A(-4,2)代入,求得“m”的值得到反比例函数的解析式,再把点B(n,-4)代入所得的反比例函数的解析式中求得“n”的值,从而可得点B的坐标,最后把A、B的坐标代入中列方程组解得“k、b”的值即可得到一次函数的解析式;(2)设直线AB和x轴交于点C,先求出点C的坐标,再由S△AOB=S△AOC+S△BOC,即可计算出△AOB的面积;【详解】(1)把点A(-4,2)代入得:,解得:,∴反比例函数的解析式为:.把点B(n,-4)代入得:,解得:,∴点B的坐标为(2,-4).把点A、B的坐标代入得:,解得,∴一次函数的解析式是;(2)如图,设AB与x轴的交点为点C,在中由可得:,解得:.∴点C的坐标是(-2,0).∴OC=2,∴S△AOB=S△AOC+S△BOC=.21、(1)生物园的宽为米,长为米;(2)不能围成面积为平方米的生物园,见解析【分析】(1)设垂直于墙的一边长为x米,则平行于墙的一边长为(16-2x)米,根据长方形的面积公式结合生物园的面积为30平方米,即可得出关于x的一元二次方程,解之取其较大值即可得出结论;
(2)设垂直于墙的一边长为y米,则平行于墙的一边长为(16-2y)米,根据长方形的面积公式结合生物园的面积为35平方米,即可得出关于y的一元二次方程,由根的判别式△<0可得出该方程无解,进而可得出不能围成面积为35平方米的生物园.【详解】解:(1)设生物园的宽为米,那么长为米,依题意得:,解得,,当时,,不符合题意,舍去∴,答:生物园的宽为米,长为米.(2)设生物园的宽为米,那么长为米,依题意得:,∵,∴此方程无解,∴不能围成面积为平方米的生物园.【点睛】本题考查了一元二次方程的应用以及根的判别式,找准等量关系,正确列出一元二次方程是解题的关键.22、(1)41(2)15%(3)【分析】(1)用散文的频数除以其频率即可求得样本总数;(2)根据其他类的频数和总人数求得其百分比即可;(3)画树状图得出所有等可能的情况数,找出恰好是丙与乙的情况,即可确定出所求概率.【详解】(1)∵喜欢散文的有11人,频率为1.25,∴m=11÷1.25=41;(2)在扇形统计图中,“其他”类所占的百分比为×111%=15%,故答案为15%;(3)画树状图,如图所示:所有等可能的情况有12种,其中恰好是丙与乙的情况有2种,∴P(丙和乙)==.23、x=7.5;m=15【分析】设2x2﹣17x+m=0的另一个根为,根据根与系数的关系得出,求出的值即可;任意把一个根代入方程中,即可求出m的值.【详解】解:设2x2﹣17x+m=0的另一个根为,则:解得:把代入方程2x2﹣17x+m=0解得:【点睛】此题是一元二次方程根与系数之间关系
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 押金合同范本应用指南
- 通信槽探施工合同
- 电力设施建设招投标诚信承诺书
- 产业园环境卫生管理协议
- 环保工程设备安全评估工程队合同
- 环保工程建设项目合同样本
- 市场代理权转让合同
- 垃圾处理灰工施工合同
- 商务租车服务合同
- 建筑装饰电焊工程协议
- 燃气经营安全重大隐患判定标准课件
- 小学一年级数学两位数加减一位数竞赛监控模拟题
- CHT 8023-2011 机载激光雷达数据处理技术规范(正式版)
- 检验科进修汇报课件
- 西方现代艺术赏析(吉林联盟)智慧树知到期末考试答案章节答案2024年吉林大学
- 《通信工程设计与施工》试卷及答案
- (新课标)新冀人版小学科学六年级上册第四单元第13课《动物与能量》说课稿
- 年产10万套新能源车电池托盘和储能箱体项目可行性研究报告
- 低压电工基础知识培训
- MOOC 葡萄酒文化与鉴赏-西北工业大学 中国大学慕课答案
- 人工智能科普教育活动方案
评论
0/150
提交评论