版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
黑龙江省庆安县2025届九上数学期末监测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.下列事件是必然事件的是()A.3个人分成两组,并且每组必有人,一定有2个人分在一组B.抛一枚硬币,正面朝上C.随意掷两个均匀的骰子,朝上面的点数之和为6D.打开电视,正在播放动画片2.如图的几何体由6个相同的小正方体搭成,它的主视图是()A. B. C. D.3.如图,在⊙O中,是直径,是弦,于,连接,∠,则下列说法正确的个数是()①;②;③;④A.1 B.2 C.3 D.44.为了测量某沙漠地区的温度变化情况,从某时刻开始记录了12个小时的温度,记时间为(单位:)温度为(单位:).当时,与的函数关系是,则时该地区的最高温度是()A. B. C. D.5.下列图形中,既是轴对称图形,又是中心对称图形的是()A.正三角形 B.正五边形 C.正六边形 D.正七边形6.如图,已知小明、小颖之间的距离为3.6m,他们在同一盏路灯下的影长分别为1.8m,1.6m,已知小明、小颖的身高分别为1.8m,1.6m,则路灯的高为()A.3.4m B.3.5m C.3.6m D.3.7m7.一个不透明的袋子中装有2个红球、3个白球,每个球除颜色外都相同.从中任意摸出3个球,下列事件为必然事件的是()A.至少有1个球是红球 B.至少有1个球是白球C.至少有2个球是红球 D.至少有2个球是白球8.如图,直线l和双曲线y=(k>0)交于A、B两点,P是线段AB上的点(不与A、B重合),过点A、B、P分别向x轴作垂线,垂足分别为C、D、E,连接OA、OB、OP,设△AOC的面积为S1、△BOD的面积为S2、△POE的面积为S3,则()A.S1<S2<S3 B.S1>S2>S3 C.S1=S2>S3 D.S1=S2<S39.如图,在中,,,,以边的中点为圆心作半圆,使与半圆相切,点分别是边和半圆上的动点,连接,则长的最大值与最小值的和是()A.8 B.9 C.10 D.1210.下列图形中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.二、填空题(每小题3分,共24分)11.关于x的一元二次方程3(x﹣1)=x(1﹣x)的解是_____.12.如图,点为等边三角形的外心,连接.①___________.②弧以为圆心,为半径,则图中阴影部分的面积等于__________.13.点(﹣1,)、(2,)是直线上的两点,则(填“>”或“=”或“<”)14.如图,旗杆高AB=8m,某一时刻,旗杆影子长BC=16m,则tanC=_____.15.在如图所示的网格中,每个小正方形的边长都为2,若以小正形的顶点为圆心,4为半径作一个扇形围成一个圆锥,则所围成的圆锥的底面圆的半径为___________.16.抛物线y=﹣3(x﹣1)2+2的开口向_____,对称轴为_____,顶点坐标为_____.17.某市某楼盘的价格是每平方米6500元,由于市场萎靡,开发商为了加快资金周转,决定进行降价促销,经过连续两次下调后,该楼盘的价格为每平方米5265元.设平均每次下调的百分率为,则可列方程为____________________.18.一个密码箱的密码,每个数位上的数都是从0到9的自然数,若要使一次拨对的概率小于,则密码的位数至少要设置___位.三、解答题(共66分)19.(10分)如图,点E是△ABC的内心,AE的延长线与△ABC的外接圆相交于点D.(1)若∠BAC=70°,求∠CBD的度数;(2)求证:DE=DB.20.(6分)解方程:21.(6分)有一枚均匀的正四面体,四个面上分别标有数字1,2,3,4,小红随机地抛掷一次,把着地一面的数字记为x;另有三张背面完全相同,正面上分别写有数字-2,-1,1的卡片,小亮将其混合后,正面朝下放置在桌面上,并从中随机地抽取一张,把卡片正面上的数字记为y;然后他们计算出S=x+y的值.(1)用树状图或列表法表示出S的所有可能情况;(2)分别求出当S=0和S<2时的概率.22.(8分)如图1,抛物线y=﹣x2+bx+c交x轴于点A(-4,0)和点B,交y轴于点C(0,4).(1)求抛物线的函数表达式;(2)如图2,设点Q是线段AC上的一动点,作DQ⊥x轴,交抛物线于点D,当△ADC面积有最大值时,在抛物线对称轴上找一点M,使DM+AM的值最小,求出此时M的坐标;(3)点Q在直线AC上的运动过程中,是否存在点Q,使△BQC为等腰三角形?若存在,直接写出点Q的坐标;若不存在,请说明理由.23.(8分)某校有一露天舞台,纵断面如图所示,AC垂直于地面,AB表示楼梯,AE为舞台面,楼梯的坡角∠ABC=45°,坡长AB=2m,为保障安全,学校决定对该楼梯进行改造,降低坡度,拟修新楼梯AD,使∠ADC=30°(1)求舞台的高AC(结果保留根号)(2)楼梯口B左侧正前方距离舞台底部C点3m处的文化墙PM是否要拆除?请说明理由.24.(8分)解方程:(1)(2)25.(10分)在△ABC中,P为边AB上一点.(1)如图1,若∠ACP=∠B,求证:AC2=AP·AB;(2)若M为CP的中点,AC=2,①如图2,若∠PBM=∠ACP,AB=3,求BP的长;②如图3,若∠ABC=45°,∠A=∠BMP=60°,直接写出BP的长.26.(10分)如图,抛物线与轴交于A、B两点,与轴交于点C,抛物线的对称轴交轴于点D,已知点A的坐标为(-1,0),点C的坐标为(0,2).(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.
参考答案一、选择题(每小题3分,共30分)1、A【分析】根据必然事件是指在一定条件下,一定发生的事件,对每一选项判断即可.【详解】解:A、3个人分成两组,并且每组必有人,一定有2个人分在一组是必然事件,符合题意,故选A;B、抛一枚硬币,正面朝上是随机事件,故不符合题意,B选项错误;C、随意掷两个均匀的骰子,朝上面的点数之和为6是随机事件,故不符合题意,C选项错误;D、打开电视,正在播放动画片是随机事件,故不符合题意,D选项错误;故答案选择D.【点睛】本题考查的是事件的分类,事件分为必然事件,随机事件和不可能事件,掌握概念是解题的关键.2、A【分析】根据从正面看得到的视图是主视图,可得答案.【详解】从正面看有三列,从左起第一列有两个正方形,第二列有两个正方形,第三列有一个正方形,故A符合题意,故选A.【点睛】本题考查了简单组合体的三视图,从正面看得到的视图是主视图.3、C【分析】先根据垂径定理得到,CE=DE,再利用圆周角定理得到∠BOC=40°,则根据互余可计算出∠OCE的度数,于是可对各选项进行判断.【详解】∵AB⊥CD,∴,CE=DE,②正确,∴∠BOC=2∠BAD=40°,③正确,∴∠OCE=90°−40°=50°,④正确;又,故①错误;故选:C.【点睛】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了圆周角定理.4、D【分析】利用配方法求最值.【详解】解:∵a=-1<0∴当t=5时,y有最大值为36故选:D【点睛】本题考查配方法求最值,掌握配方法的方法正确计算是本题的解题关键.5、C【分析】根据轴对称图形与中心对称图形的概念求解即可.【详解】A、此图形不是中心对称图形,是轴对称图形,故此选项错误;
B、此图形不是中心对称图形,是轴对称图形,故此选项错误;
C、此图形既是中心对称图形,又是轴对称图形,故此选项正确;
D、此图形不是中心对称图形,是轴对称图形,故此选项错误.
故选:C.【点睛】本题主要考查了轴对称图形与中心对称图形,掌握好中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.6、B【分析】根据CD∥AB∥MN,得到△ABE∽△CDE,△ABF∽△MNF,根据相似三角形的性质可知,,即可得到结论.【详解】解:如图,∵CD∥AB∥MN,∴△ABE∽△CDE,△ABF∽△MNF,∴,即,,解得:AB=3.5m,故选:B.【点睛】本题考查的是相似三角形的应用,相似三角形的判定和性质,熟练掌握相似三角形的判定和性质是解题的关键.7、B【解析】A.至少有1个球是红球是随机事件,选项错误;B.至少有1个球是白球是必然事件,选项正确;C.至少有2个球是红球是随机事件,选项错误;D.至少有2个球是白球是随机事件,选项错误.故选B.8、D【分析】根据双曲线的解析式可得所以在双曲线上的点和原点形成的三角形面积相等,因此可得S1=S2,设OP与双曲线的交点为P1,过P1作x轴的垂线,垂足为M,则可得△OP1M的面积等于S1和S2,因此可比较的他们的面积大小.【详解】根据双曲线的解析式可得所以可得S1=S2=设OP与双曲线的交点为P1,过P1作x轴的垂线,垂足为M因此而图象可得所以S1=S2<S3故选D【点睛】本题主要考查双曲线的意义,关键在于,它代表的就是双曲线下方的矩形的面积.9、C【分析】如图,设⊙O与BC相切于点E,连接OE,作OP2⊥AC垂足为P2交⊙O于Q2,此时垂线段OP2最短,P2Q2最小值为OQ2-OP2,如图当Q2在AB边上时,P2与A重合时,P2Q2最大值,由此不难解决问题.【详解】解:如图,设⊙O与BC相切于点E,连接OE,作OP2⊥AC垂足为P2交⊙O于Q2,
此时垂线段OP2最短,P2Q2最小值为OQ2-OP2,
∵AB=20,AC=8,BC=6,
∴AB2=AC2+BC2,∴∠C=90°,
∵∠OP2A=90°,∴OP2∥BC.
∵O为AB的中点,∴P2C=P2A,OP2=BC=2.又∵BC是⊙O的切线,∴∠OEB=90°,∴OE∥AC,又O为AB的中点,∴OE=AC=4=OQ2.
∴P2Q2最小值为OQ2-OP2=4-2=2,
如图,当Q2在AB边上时,P2与A重合时,P2Q2经过圆心,经过圆心的弦最长,
P2Q2最大值=AO+OQ2=5+4=9,
∴PQ长的最大值与最小值的和是20.
故选:C.【点睛】本题考查切线的性质,三角形中位线定理,勾股定理的逆定理以及平行线的判定等知识,解题的关键是正确找到点PQ取得最大值、最小值时的位置,属于中考常考题型.10、B【分析】中心对称图形绕某一点旋转180°后的图形与原来的图形重合,轴对称图形被一条直线分割成的两部分沿着对称轴折叠时,互相重合,据此逐一判断出既是轴对称图形又是中心对称图形的是哪个即可.【详解】A是轴对称图形,不是中心对称图形,故选项错误;B既是轴对称图形,又是中心对称图形,故选项正确;C不是轴对称图形,是中心对称图形,故选项错误;D不是轴对称图形,是中心对称图形,故选项错误;故选B【点睛】本题考查了轴对称图形和中心对称图形的判断,掌握其定义即可快速判断出来.二、填空题(每小题3分,共24分)11、【分析】由题意直接利用因式分解法进行计算求解即可得出答案.【详解】解:∵1(x﹣1)=﹣x(x﹣1),∴1(x﹣1)+x(x﹣1)=0,∴(x﹣1)(x+1)=0,则x﹣1=0或x+1=0,解得:x1=1,x2=﹣1,故答案为:x1=1,x2=﹣1.【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.12、120【分析】①连接OC利用等边三角形的性质可得出,可得出的度数②阴影部分的面积即求扇形AOC的面积,利用面积公式求解即可.【详解】解:①连接OC,∵O为三角形的外心,∴OA=OB=OC∴∴∴.②∵∴∴阴影部分的面积即求扇形AOC的面积∵∴阴影部分的面积为:.【点睛】本题考查的知识点有等边三角形外心的性质,全等三角形的判定及其性质以及扇形的面积公式,利用三角形外心的性质得出OA=OB=OC是解题的关键.13、<.【解析】试题分析:∵k=2>0,y将随x的增大而增大,2>﹣1,∴<.故答案为<.考点:一次函数图象上点的坐标特征.14、.【分析】根据直角三角形的性质解答即可.【详解】∵旗杆高AB=8m,旗杆影子长BC=16m,∴tanC===,故答案为【点睛】此题考查解直角三角形的应用,关键是根据正切值是对边与邻边的比值解答.15、【分析】先根据直角三角形边长关系得出,再分别计算此扇形的弧长和侧面积后即可得到结论.【详解】解:如图,,,.,,的长度,设所围成的圆锥的底面圆的半径为,,,故答案为:.【点睛】本题考查了圆锥的计算及弧长的计算的知识,解题的关键是能够从图中了解到扇形的弧长和扇形的半径并利用扇形的有关计算公式进行计算,难度不大.16、下直线x=1(1,2)【分析】根据y=a(x-h)2+k的性质即可得答案【详解】∵-3<0,∴抛物线的开口向下,∵y=﹣3(x﹣1)2+2是二次函数的顶点式,∴该抛物线的对称轴是直线x=1,顶点坐标为(1,2),故答案为:下,直线x=1,(1,2)【点睛】本题主要考查了二次函数的性质,熟练掌握二次函数的三种形式及性质是解题关键.17、【分析】根据连续两次下调后,该楼盘的价格为每平方米5265元,可得出一元二次方程.【详解】根据题意可得,楼盘原价为每平方米6500元,每次下调的百分率为,经过两次下调即为,最终价格为每平方米5265元.故得:【点睛】本题主要考察了一元二次方程的应用,熟练掌握解平均变化率的相关方程题时解题的关键.18、1.【分析】分别求出取一位数、两位数、三位数、四位数时一次就拨对密码的概率,再根据所在的范围解答即可.【详解】因为取一位数时一次就拨对密码的概率为;取两位数时一次就拨对密码的概率为;取三位数时一次就拨对密码的概率为;取四位数时一次就拨对密码的概率为.故一次就拨对的概率小于,密码的位数至少需要1位.故答案为1.【点睛】本题考查概率的求法与运用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.三、解答题(共66分)19、(1)35°;(2)证明见解析.【分析】(1)由点E是△ABC的内心,∠BAC=70°,易得∠CAD=,进而得出∠CBD=∠CAD=35°;(2)由点E是△ABC的内心,可得E点为△ABC角平分线的交点,可得∠ABE=∠CBE,∠BAD=∠CAD,可推导出∠DBE=∠BED,可得DE=DB.【详解】(1)∵点E是△ABC的内心,∠BAC=70°,∴∠CAD=,∵,∴∠CBD=∠CAD=35°;(2)∵E是内心,∴∠ABE=∠CBE,∠BAD=∠CAD.∵∠CBD=∠CAD,∴∠CBD=∠BAD,∵∠BAD+∠ABE=∠BED,∠CBE+∠CBD=∠DBE,∴∠DBE=∠BED,∴DE=DB.【点睛】此题考查了圆的内心的性质以及角平分线的性质等知识.此题综合性较强,注意数形结合思想的应用.20、(1),;(2)【分析】(1)先移项,再利用配方法求解即可.(2)合并同类项,再利用配方法求解即可.【详解】(1)解得,(2)解得【点睛】本题考查了一元二次方程的计算,掌握利用配方法求方程的解是解题的关键.21、(1)答案见解析;(2),【解析】试题分析:列举出符合题意的各种情况的个数,再根据概率公式解答即可.解:(1)画树状图,(2)由图可知,所有可能出现的结果有12种,其中S=0的有2种,S<2的有5种,∴P(S=0)=,P(S<2)=.22、(1);(2)点M的坐标为M(,5);(3)存在,Q(,)或(,)或(-3,1)或().【分析】(1)将A(-4,0)、C(0,4)代入y=﹣x2+bx+c中即可得;(2)直线AC的解析式为:,表达出DQ的长度,及△ADC的面积,根据二次函数的性质得出△ADC面积的最大值,从而得出D点坐标,作点D关于对称轴对称的点,确定点M,使DM+AM的值最小;(3)△BQC为等腰三角形,则表达出三边,并对三边进行分类讨论,计算得出Q点的坐标即可.【详解】解:(1)将A(-4,0)、C(0,4)代入y=﹣x2+bx+c中得,解得,∴,(2)直线AC的解析式为:设Q(m,m+4),则D(m,)DQ=()-(m+4)=当m=-2时,面积有最大值此时点D的坐标为D(-2,6),D点关于对称轴对称的点D1(-1,6)直线AD1的解析式为:当时,所以,点M的坐标为M(,5)(3)∵,∴设Q(t,t+4),由得,,∴B(1,0),∴,△BQC为等腰三角形①当BC=QC时,则,∴此时,∴Q(,)或(,);②当BQ=QC时,则,解得,∴Q();③当BQ=BC时,则,解得t=-3,∴Q(-3,1);综上所述,若△BQC为等腰三角形,则Q(,)或(,)或(-3,1)或().【点睛】本题考查二次函数与最短路径,面积最大值,动点存在性等几何的综合应用,难度较大,解题的关键是能够灵活运用二次函数的性质及几何知识.23、(1)m;(2)不需拆除文化墙PM,理由见解析.【分析】(1)根据锐角三角函数,即可求出AC;(2)由题意可知:CM=3m,根据锐角三角函数即可求出DC,最后比较DC和CM的大小即可判断.【详解】解:(1)在Rt△ABC中,∠ABC=45°,坡长AB=2m,∴AC=AB·sin∠ABC=m答:舞台的高AC为m;(2)不需拆除文化墙PM,理由如下,由题意可知:CM=3m在Rt△ADC中,∠ADC=30°,AC=m∴DC=m∵m<3m∴DC<CM∴不需拆除文化墙PM.【点睛】此题考查的是解直角三角形的应用,掌握用锐角三角函数解直角三角形是解决此题的关键.24、(1),;(2)x1=2,x2=-1.【分析】(1)方程移项后,利用完全平方公式配方,开方即可求出解;(2)提取公因式化为积的形式,然后利用两因式相乘积为0,两因式中至少有一个为0,转化为两个一元一次方程来求解.【详解】解:(1)方程整理得:,
配方得:,即,
开方得:,
解得:,;(2)方程变形得:,即,即或,解得.【点睛】本题考查解一元二次方程.熟练掌握解一元二次方程的方法,并能结合实际情况选择合适的方法是解决此题的关键.25、(1)证明见解析;(2)①BP=;②BP=.【解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《计算机公共基础》课件
- 2025年度南京办公室装修项目造价咨询合同3篇
- 2025年度燃气行业员工离职经济补偿及争议处理合同-@-1
- 课题申报参考:逆向跨国并购后企业内部控制合规管理模式构建研究
- 二零二五年度国际能源资源合作合同4篇
- 课题申报参考:面向社交网络大数据的沂蒙精神传播态势及优化路径研究
- 2025版精密机床购置及售后服务合同2篇
- 二零二五年度医疗健康商标转让与知识产权合同
- 2025年度个人与公司间技术秘密保护协议
- 2025版内衣品牌跨界合作营销合同4篇
- 如何提高售后服务的快速响应能力
- 北师大版 2024-2025学年四年级数学上册典型例题系列第三单元:行程问题“拓展型”专项练习(原卷版+解析)
- 2023年译林版英语五年级下册Units-1-2单元测试卷-含答案
- Unit-3-Reading-and-thinking课文详解课件-高中英语人教版必修第二册
- 施工管理中的文档管理方法与要求
- DL∕T 547-2020 电力系统光纤通信运行管理规程
- 种子轮投资协议
- 员工工资条模板
- 执行依据主文范文(通用4篇)
- 浙教版七年级数学下册全册课件
- 华为携手深圳国际会展中心创建世界一流展馆
评论
0/150
提交评论