2025届湖北省黄石十四中学数学九上期末监测试题含解析_第1页
2025届湖北省黄石十四中学数学九上期末监测试题含解析_第2页
2025届湖北省黄石十四中学数学九上期末监测试题含解析_第3页
2025届湖北省黄石十四中学数学九上期末监测试题含解析_第4页
2025届湖北省黄石十四中学数学九上期末监测试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届湖北省黄石十四中学数学九上期末监测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.在Rt△ABC中,∠C=90°,tanA=,则sinA的值为()A. B. C. D.2.为了宣传垃圾分类,童威写了一篇倡议书,决定用微博转发的方式传播.他设计了如下的传播规则:将倡议书发表在自己的微博上,再邀请n个好友转发,每个好友转发之后,又邀请n个互不相同的好友转发,依次类推.已知经过两轮转发后,共有111个人参与了宣传活动,则n的值为()A.9 B.10 C.11 D.123.下列运算正确的是()A.=﹣2 B.(2)2=6 C. D.4.如图,在中,是直径,点是上一点,点是弧的中点,于点,过点的切线交的延长线于点,连接,分别交,于点.连接,关于下列结论:①;②;③点是的外心,其中正确结论是()A.①② B.①③ C.②③ D.①②③5.下列图形中一定是相似形的是()A.两个菱形 B.两个等边三角形 C.两个矩形 D.两个直角三角形6.一元二次方程x2﹣2kx+k2﹣k+2=0有两个不相等的实数根,则k的取值范围是()A.k>﹣2 B.k<﹣2 C.k<2 D.k>27.如图,已知⊙O的内接正六边形ABCDEF的边长为6,则弧BC的长为()A.2π B.3π C.4π D.π8.如图,⊙中,,则等于()A. B. C. D.9.下列成语所描述的事件是必然发生的是()A.水中捞月 B.拔苗助长 C.守株待兔 D.瓮中捉鳖10.如图,PA与PB分别与圆O相切与A、B两点,∠P=80o,则∠C=()A.45 B.50 C.55 D.60二、填空题(每小题3分,共24分)11.如图,半径为的⊙O与边长为8的等边三角形ABC的两边AB、BC都相切,连接OC,则sin∠OCB=___________.12.已知扇形的弧长为2π,圆心角为60°,则它的半径为________.13.已知如图,中,,点在上,,点、分别在边、上移动,则的周长的最小值是__________.14.河堤横截面如图所示,堤高为4米,迎水坡的坡比为1:(坡比=),那么的长度为____________米.15.已知:如图,△ABC的面积为12,点D、E分别是边AB、AC的中点,则四边形BCED的面积为_____.16.某校有一块长方形的空地,其中长米,宽米,准备在这块空地上修3条小路,路宽都一样为米,并且有一条路与平行,2条小路与平行,其余地方植上草坪,所种植的草坪面积为110米.根据题意可列方程_________.17.已知,则___________.18.某农科所在相同条件下做玉米种子发芽实验,结果如下:某位顾客购进这种玉米种子10千克,那么大约有_____千克种子能发芽.三、解答题(共66分)19.(10分)现有甲、乙、丙三名学生参加学校演讲比赛,并通过抽签确定三人演讲的先后顺序.(1)求甲第一个演讲的概率;(2)画树状图或表格,求丙比甲先演讲的概率.20.(6分)先化简,再求值:,其中a=2.21.(6分)某化肥厂2019年生产氮肥4000吨,现准备通过改进技术提升生产效率,计划到2021年生产氮肥4840吨.现技术攻关小组按要求给出甲、乙两种技术改进方案,其中运用甲方案能使每年产量增长的百分率相同,运用乙方案能使每年增长的产量相同.问运用哪一种方案能使2020年氮肥的产量更高?高多少?22.(8分)汽车产业的发展,有效促进我国现代建设.某汽车销售公司2007年盈利3000万元,到2009年盈利4320万元,且从2007年到2009年,每年盈利的年增长率相同,该公司2008年盈利多少万元?23.(8分)近期猪肉价格不断走高,引起市民与政府的高度关注,当市场猪肉的平均价格达到一定的单价时,政府将投入储备猪肉以平抑猪肉价格.(1)从今年年初至5月20日,猪肉价格不断走高,5月20日比年初价格上涨了60%,某市民在今年5月20日购买2.5千克猪肉至少要花100元钱,那么今年年初猪肉的最低价格为每千克多少元?(2)5月20日猪肉价格为每千克40元,5月21日,某市决定投入储备猪肉,并规定其销售价格在5月20日每千克40元的基础上下调a%出售,某超市按规定价出售一批储备猪肉,该超市在非储备猪肉的价格仍为40元的情况下,该天的两种猪肉总销量比5月20日增加了a%,且储备猪肉的销量占总销量的,两种猪肉销售的总金额比5月20日提高了,求a的值.24.(8分)如图,是的直径,过的中点.,垂足为.(1)求证:直线是的切线;(2)若,的直径为,求的长及的值.25.(10分)如图,在中,,以为直径作交于点.过点作,垂足为,且交的延长线于点.(1)求证:是的切线;(2)若,,求的长.26.(10分)如图,⊙O的半径为1,A,P,B,C是⊙O上的四个点,∠APC=∠CPB=60°.判断△ABC的形状,并证明你的结论;

参考答案一、选择题(每小题3分,共30分)1、B【分析】由题意直接根据三角函数的定义进行分析即可求解.【详解】解:∵在Rt△ABC中,∠C=90°,tanA=,∴可以假设BC=k,AC=2k,∴AB=k,∴sinA==.故选:B.【点睛】本题考查同角三角函数的计算,解题本题的关键是明确sinA等于对边与斜边的比.2、B【分析】设邀请了n个好友转发倡议书,第一轮传播了n个人,第二轮传播了n2个人,根据两轮传播共有111人参与列出方程求解即可.【详解】由题意,得n+n2+1=111,解得:n1=-11(舍去),n2=10,故选B.【点睛】本题考查了列一元二次方程解实际问题的运用,解答时先由条件表示出第一轮增加的人数和第二轮增加的人数根据两轮总人数为111人建立方程是关键.3、D【解析】根据二次根式的性质以及二次根式加法,乘法及乘方运算法则计算即可.【详解】A:=2,故本选项错误;B:(2)2=12,故本选项错误;C:与不是同类二次根式,不能合并,故本选项错误;D:根据二次根式乘法运算的法则知本选项正确,故选D.【点睛】本题考查的是二次根式的性质及二次根式的相关运算法则,熟练掌握是解题的关键.4、C【分析】由于与不一定相等,根据圆周角定理可知①错误;连接OD,利用切线的性质,可得出∠GPD=∠GDP,利用等角对等边可得出GP=GD,可知②正确;先由垂径定理得到A为的中点,再由C为的中点,得到,根据等弧所对的圆周角相等可得出∠CAP=∠ACP,利用等角对等边可得出AP=CP,又AB为直径得到∠ACQ为直角,由等角的余角相等可得出∠PCQ=∠PQC,得出CP=PQ,即P为直角三角形ACQ斜边上的中点,即为直角三角形ACQ的外心,可知③正确;【详解】∵在⊙O中,AB是直径,点D是⊙O上一点,点C是弧AD的中点,∴=≠,∴∠BAD≠∠ABC,故①错误;连接OD,则OD⊥GD,∠OAD=∠ODA,∵∠ODA+∠GDP=90,∠EPA+∠EAP=∠EAP+∠GPD=90,∴∠GPD=∠GDP;∴GP=GD,故②正确;∵弦CF⊥AB于点E,∴A为的中点,即,又∵C为的中点,∴,∴,∴∠CAP=∠ACP,∴AP=CP.∵AB为圆O的直径,∴∠ACQ=90,∴∠PCQ=∠PQC,∴PC=PQ,∴AP=PQ,即P为Rt△ACQ斜边AQ的中点,∴P为Rt△ACQ的外心,故③正确;故选C.【点睛】此题是圆的综合题,其中涉及到切线的性质,圆周角定理,垂径定理,圆心角、弧、弦的关系定理,相似三角形的判定与性质,以及三角形的外接圆与圆心,平行线的判定,熟练掌握性质及定理是解决本题的关键.5、B【分析】如果两个多边形的对应角相等,对应边的比相等,则这两个多边形是相似多边形.【详解】解:∵等边三角形的对应角相等,对应边的比相等,∴两个等边三角形一定是相似形,又∵直角三角形,菱形的对应角不一定相等,矩形的边不一定对应成比例,∴两个直角三角形、两个菱形、两个矩形都不一定是相似形,故选:B.【点睛】本题考查了相似多边形的识别.判定两个图形相似的依据是:对应边成比例,对应角相等,两个条件必须同时具备.6、D【分析】根据一元二次方程有两个不相等的实数根,得△即可求解.【详解】∵一元二次方程x2﹣2kx+k2﹣k+2=0有两个不相等的实数根,∴△解得k>2.故选D.【点睛】本题考查一元二次方程△与参数的关系,列不等式是解题关键.7、A【分析】连接OC、OB,求出圆心角∠AOB的度数,再利用弧长公式解答即可.【详解】解:连接OC、OB∵六边形ABCDEF为正六边形,∴∠COB==60°,∵OA=OB∴△OBC是等边三角形,∴OB=OC=BC=6,弧BC的长为:.故选:A.【点睛】此题考查了扇形的弧长公式与多边形的性质相结合,构思巧妙,利用了正六边形的性质,解题的关键是掌握扇形的弧长公式.8、C【分析】直接根据圆周角定理解答即可.【详解】解:∵∠ABC与∠AOC是一条弧所对的圆周角与圆心角,∠ABC=45°,

∴∠AOC=2∠ABC=2×45°=90°.

故选:C.【点睛】本题考查的是圆周角定理,即在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.9、D【分析】必然事件是指一定会发生的事件;不可能事件是指不可能发生的事件;随机事件是指可能发生也可能不发生的事件.根据定义,对每个选项逐一判断【详解】解:A选项,不可能事件;B选项,不可能事件;C选项,随机事件;D选项,必然事件;故选:D【点睛】本题考查了必然事件、不可能事件、随机事件,正确理解必然事件、不可能事件、随机事件的定义是本题的关键10、B【分析】连接AO,BO,根据题意可得∠PAO=∠PBO=90°,根据∠P=80°得出∠AOB=100°,利用圆周角定理即可求出∠C.【详解】解:连接AO,BO,∵PA与PB分别与圆O相切与A、B两点,∴∠PAO=∠PBO=90°,∵∠P=80°,∴∠AOB=360°-90°-90°-80°=100°,∴∠C=,故选:B.【点睛】本题考查了切线的性质以及圆周角定理,解题的关键是熟知切线的性质以及圆周角定理的内容.二、填空题(每小题3分,共24分)11、【分析】根据切线长定理得出,解直角三角形求得,即可求得,然后解Rt△OCD即可求得的值.【详解】解:连接,作于,与等边三角形的两边、都相切,,,,,在Rt△OCD中,.故答案为:.【点睛】本题考查了切线的性质,等边三角形的性质,解直角三角形等,作出辅助线构建直角三角形是解题的关键.12、6.【解析】分析:设扇形的半径为r,根据扇形的面积公式及扇形的面积列出方程,求解即可.详解:设扇形的半径为r,根据题意得:60πr解得:r=6故答案为6.点睛:此题考查弧长公式,关键是根据弧长公式解答.13、【分析】作P关于AO,BO的对称点E,F,连接EF与OA,OB交于MN,此时△PMN周长最小;连接OE,OF,作OG⊥EF,利用勾股定理求出EG,再根据等腰三角形性质可得EF.【详解】作P关于AO,BO的对称点E,F,连接EF与OA,OB交于MN,此时△PMN周长最小;连接OE,OF,作OG⊥EF根据轴对称性质:PM=EM,PN=NF,OE=OP,OE=OF=OP=10,∠EOA=∠AOP,∠BOF=∠POB∵∠AOP+∠POB=60°∴∠EOF=60°×2=120°∴∠OEF=∵OG⊥EF∴OG=OE=∴EG=所以EF=2EG=10由已知可得△PMN的周长=PM+MN+PN=EF=10故答案为:10【点睛】考核知识点:轴对称,勾股定理.根据轴对称求最短路程,根据勾股定理求线段长度是关键.14、8【分析】在Rt△ABC中,根据坡面AB的坡比以及BC的值,求出AC的值,再通过解直角三角形即可求出斜面AB的长.【详解】∵Rt△ABC中,BC=6米,迎水坡AB的坡比为1:,∴BC:AC=1:,∴AC=•BC=4(米),∴(米)【点睛】本题考查了解直角三角形的应用----坡度坡角问题,熟练运用勾股定理是解答本题的关键.15、1【解析】设四边形BCED的面积为x,则S△ADE=12﹣x,由题意知DE∥BC且DE=BC,从而得,据此建立关于x的方程,解之可得.【详解】设四边形BCED的面积为x,则S△ADE=12﹣x,∵点D、E分别是边AB、AC的中点,∴DE是△ABC的中位线,∴DE∥BC,且DE=BC,∴△ADE∽△ABC,则=,即,解得:x=1,即四边形BCED的面积为1,故答案为1.【点睛】本题主要考查相似三角形的判定与性质,解题的关键是掌握中位线定理及相似三角形的面积比等于相似比的平方的性质.16、【分析】根据题意算出草坪的长和宽,根据长方形的面积公式列式即可.【详解】∵长方形长米,宽米,路宽为米,∴草坪的长为,宽为,∴草坪的面积为.故答案为.【点睛】本题主要考查了一元二次方程的应用,根据题意准确列式是解题的关键.17、【分析】根据比例式设a=2k,b=5k,代入求值即可解题.【详解】解:∵,设a=2k,b=5k,∴【点睛】本题考查了比例的性质,属于简单题,设k法是解题关键.18、1.1【分析】观察图中的频率稳定在哪个数值附近,由此即可求出作物种子的概率.【详解】解:∵大量重复试验发芽率逐渐稳定在0.11左右,∴10kg种子中能发芽的种子的质量是:10×0.11=1.1(kg)故答案为:1.1.【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.三、解答题(共66分)19、(1);(2)画图见解析;【分析】(1)从3个人中选一个,得甲第一个演讲的概率是(2)列树状图即可求得答案.【详解】(1)甲第一个演讲的概率是;(2)树状图如下:共有6种等可能情况,其中丙比甲先演讲的有3种,∴P(丙比甲先演讲)=.【点睛】此题考查事件的概率,在确定事件的概率时通常选用树状图或列表法解答.20、,2【分析】先根据分式的运算顺序和运算法则化简原式,再将a=2代入计算即可;【详解】解:原式=;当a=2时,原式值=;【点睛】本题主要考查了分式的化简求值,掌握分式的运算顺序和运算法则是解题的关键.21、乙方案能使2020年氮肥的产量更高,高20吨【分析】设甲方案的平均增长率为,根据题意列出方程,求出x的值,即可求出甲方案2020年产量,再根据题意求出乙方案2020年产量,比较即可得出结论.【详解】解:设甲方案的平均增长率为,依题意得.解得,,(不合题意,舍去).甲方案2020年产量:,乙方案2020年产量:.,(吨).答:乙方案能使2020年氮肥的产量更高,高20吨.【点睛】此题考查的是一元二次方程的应用,掌握增长率问题的公式是解决此题的关键.22、2008年盈利3600万元.【分析】设该公司从2007年到2009年,每年盈利的年增长率是x,根据题意列出方程进行求解即可求出年增长率;然后根据2007年的盈利,即可算出2008年的盈利.【详解】解:设每年盈利的年增长率为x,由题意得:3000(1+x)2=4320,解得:,(不合题意,舍去),∴年增长率20%,∴3000×(1+20%)=3600,答:该公司2008年盈利3600万元.【点睛】本题考查了一元二次方程的应用,解题的关键是求出从2007年到2009年,每年盈利的年增长率.23、(1)1元;(2)a=2.【分析】(1)设今年年初猪肉价格为每千克x元;根据题意列出一元一次不等式,解不等式即可;(2)设5月2日两种猪肉总销量为1;根据题意列出方程,解方程即可.【详解】解:(1)设今年年初猪肉价格为每千克x元;根据题意得:2.5×(1+60%)x≥100,解得:x≥1.答:今年年初猪肉的最低价格为每千克1元;(2)设5月2日两种猪肉总销量为1;根据题意得:40(1﹣a%)×(1+a%)+40×(1+a%)=40(1+a%),令a%=y,原方程化为:40(1﹣y)×(1+y)+40×(1+y)=40(1+y),整理得:,解得:y=0.2,或y=0(舍去),则a%=0.2,∴a=2.答:a的值为2.24、(1)见解析;(2),【分析】(1)欲证直线是的切线,需连接OD,证∠EDO=90°,根据题意,利用平行线的性质即可证得;(2)先构造直角三角形,需要连接AD,利用三角形的面积法来求出DE的长,再在Rt△ADC中来求.【详解】(1)证明:如图,连接.为的中点,为的中点,又..是圆的切线(2)解:连.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论