山西省右玉县2025届九上数学期末学业水平测试试题含解析_第1页
山西省右玉县2025届九上数学期末学业水平测试试题含解析_第2页
山西省右玉县2025届九上数学期末学业水平测试试题含解析_第3页
山西省右玉县2025届九上数学期末学业水平测试试题含解析_第4页
山西省右玉县2025届九上数学期末学业水平测试试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山西省右玉县2025届九上数学期末学业水平测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.某种工件是由一个长方体钢块中间钻了一个上下通透的圆孔制作而成,其俯视图如图所示,则此工件的左视图是(

)A. B. C. D.2.若关于的一元二次方程的两个实数根是和3,那么对二次函数的图像和性质的描述错误的是()A.顶点坐标为(1,4) B.函数有最大值4 C.对称轴为直线 D.开口向上3.在一个不透明的袋子中,装有红球、黄球、篮球、白球各1个,这些球除颜色外无其他差别,从袋中随机取出一个球,取出红球的概率为()A.

B.

C.

D.14.如图,四边形ABCD内接于⊙0,四边形ABCO是平行四边形,则∠ADC的度数为()A.30° B.45° C.60° D.75°5.已知点P在线段AB上,且AP∶PB=2∶3,那么AB∶PB为()A.3∶2 B.3∶5 C.5∶2 D.5∶36.如图,二次函数y=ax1+bx+c的图象与x轴交于点A(﹣1,0),B(3,0).下列结论:①1a﹣b=0;②(a+c)1<b1;③当﹣1<x<3时,y<0;④当a=1时,将抛物线先向上平移1个单位,再向右平移1个单位,得到抛物线y=(x﹣1)1﹣1.其中正确的是()A.①③ B.②③ C.②④ D.③④7.一个袋内装有标号分别为1、2、3、4的四个球,这些球除颜色外都相同.从袋内随机摸出一个球,让其标号为一个两位数的十位数字,放回摇匀后,再从中随机摸出一个球,让其标号为这个两位数的个位数字,则这个两位数是偶数的概率为()A. B. C. D.8.如图,在菱形ABCD中,AB=5,对角线AC=6.若过点A作AE⊥BC,垂足为E,则AE的长为()A.4 B.2.4 C.4.8 D.59.下列说法正确的是()A.菱形都是相似图形 B.矩形都是相似图形C.等边三角形都是相似图形 D.各边对应成比例的多边形是相似多边形10.如图,在菱形中,,,则对角线等于()A.2 B.4 C.6 D.8二、填空题(每小题3分,共24分)11.若,则化简成最简二次根式为__________.12.已知:,则的值是_______.13.廊桥是我国古老的文化遗产如图,是某座抛物线型的廊桥示意图,已知抛物线的函数表达式为,为保护廊桥的安全,在该抛物线上距水面AB高为8米的点E,F处要安装两盏警示灯,则这两盏灯的水平距离EF是______米精确到1米14.若关于x的一元二次方程x2+2x+m﹣2=0有实数根,则m的值可以是__.(写出一个即可)15.如图在圆心角为的扇形中,半径,以为直径作半圆.过点作的平行线交两弧分别于点,则图中阴影部分的面积是_______.16.某市某楼盘的价格是每平方米6500元,由于市场萎靡,开发商为了加快资金周转,决定进行降价促销,经过连续两次下调后,该楼盘的价格为每平方米5265元.设平均每次下调的百分率为,则可列方程为____________________.17.方程的根是_____.18.如图,在中,,于点,,,则_________;三、解答题(共66分)19.(10分)如图,在中,,以为直径作交于于于.求证:是中点;求证:是的切线20.(6分)小明、小林是景山中学九年级的同班同学,在六月份举行的招生考试中,他俩都被亭湖高级中学录取,并将被编入A、B、C三个班,他俩希望编班时分在不同班.(1)请你用画树状图法或列举法,列出所有可能的结果;(2)求两人不在同班的概率.21.(6分)(1)计算:(2)已知,求的值22.(8分)如图,直径为AB的⊙O交的两条直角边BC,CD于点E,F,且,连接BF.(1)求证CD为⊙O的切线;(2)当CF=1且∠D=30°时,求⊙O的半径.23.(8分)某商场销售一种电子产品,进价为元/件.根据以往经验:当销售单价为元时,每天的销售量是件;销售单价每上涨元,每天的销售量就减少件.(1)销售该电子产品时每天的销售量(件)与销售单价(元)之间的函数关系式为______;(2)商场决定每销售件该产品,就捐赠元给希望工程,每天扣除捐赠后可获得最大利润为元,求的值.24.(8分)小昆和小明玩摸牌游戏,游戏规则如下:有3张背面完全相同,牌面标有数字1、2、3的纸牌,将纸牌洗匀后背面朝上放在桌面上,随机抽出一张,记下牌面数字,放回后洗匀再随机抽出一张.(1)请用画树形图或列表的方法(只选其中一种),表示出两次抽出的纸牌数字可能出现的所有结果;(2)若规定:两次抽出的纸牌数字之和为奇数,则小昆获胜,两次抽出的纸牌数字之和为偶数,则小明获胜,这个游戏公平吗?为什么?25.(10分)如图,在正方形网格中,每个小正方形的边长均为1个单位.(1)把△ABC绕着点C逆时针旋转90°,画出旋转后对应的△A1B1C;(2)求△ABC旋转到△A1B1C时线段AC扫过的面积.26.(10分)如图,在等边三角形ABC中,点D,E分别在BC,AB上,且∠ADE=60°.求证:△ADC~△DEB.

参考答案一、选择题(每小题3分,共30分)1、A【解析】从左面看应是一长方形,看不到的应用虚线,由俯视图可知,虚线离边较近,故选A.2、D【分析】由题意根据根与系数的关系得到a<0,根据二次函数的性质即可得到二次函数y=a(x-1)2+1的开口向下,对称轴为直线x=1,顶点坐标为(1,1),当x=1时,函数有最大值1.【详解】解:∵关于x的一元二次方程的两个实数根是-1和3,∴-a=-1+3=2,∴a=-2<0,∴二次函数的开口向下,对称轴为直线x=1,顶点坐标为(1,1),当x=1时,函数有最大值1,故A、B、C叙述正确,D错误,故选:D.【点睛】本题考查二次函数的性质,根据一元二次方程根与系数的关系以及根据二次函数的性质进行分析是解题的关键.3、C【详解】解:∵共有4个球,红球有1个,∴摸出的球是红球的概率是:P=.故选C.【点睛】本题考查概率公式.4、C【分析】由题意根据平行四边形的性质得到∠ABC=∠AOC,根据圆内接四边形的性质、圆周角定理列式计算即可.【详解】解:∵四边形ABCO是平行四边形,∴∠ABC=∠AOC,∵四边形ABCD内接于⊙O,∴∠ABC+∠ADC=180°,由圆周角定理得,∠ADC=∠AOC,∴∠ADC=60°,故选:C.【点睛】本题考查的是圆内接四边形的性质、圆周角定理以及平行四边形的性质,掌握圆内接四边形的对角互补是解题的关键.5、D【分析】根据比例的合比性质直接求解即可.【详解】解:由题意AP∶PB=2∶3,AB∶PB=(AP+PB)∶PB=(2+3)∶3=5∶3;故选择:D.【点睛】本题主要考查比例线段问题,关键是根据比例的合比性质解答.6、D【解析】分析:根据二次函数图象与系数之间的关系即可求出答案.详解:①图象与x轴交于点A(﹣1,0),B(3,0),∴二次函数的图象的对称轴为x==1,∴=1,∴1a+b=0,故①错误;②令x=﹣1,∴y=a﹣b+c=0,∴a+c=b,∴(a+c)1=b1,故②错误;③由图可知:当﹣1<x<3时,y<0,故③正确;④当a=1时,∴y=(x+1)(x﹣3)=(x﹣1)1﹣4将抛物线先向上平移1个单位,再向右平移1个单位,得到抛物线y=(x﹣1﹣1)1﹣4+1=(x﹣1)1﹣1,故④正确;故选:D.点睛:本题考查二次函数图象的性质,解题的关键是熟知二次函数的图象与系数之间的关系,本题属于中等题型.7、A【分析】画树状图展示所有16种等可能的结果数,再找出所成的两位数是偶数的结果数,然后根据概率公式求解.【详解】解:画树状图为:共有16种等可能的结果数,其中所成的两位数是偶数的结果数为8,所以成的两位数是3的倍数的概率.故选:.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果,再从中选出符合事件或的结果数目,然后利用概率公式求事件或的概率.8、C【分析】连接BD,根据菱形的性质可得AC⊥BD,AO=AC,然后根据勾股定理计算出BO长,再算出菱形的面积,然后再根据面积公式BC•AE=AC•BD可得答案.【详解】连接BD,交AC于O点,∵四边形ABCD是菱形,∴AB=BC=CD=AD=5,∴∴∵AC=6,∴AO=3,∴∴DB=8,∴菱形ABCD的面积是∴BC⋅AE=24,故选C.9、C【分析】利用相似图形的定义分别判断后即可确定正确的选项.【详解】解:A、菱形的对应边成比例,但对应角不一定相等,故错误,不符合题意;

B、矩形的对应角相等,但对应边不一定成比例,故错误,不符合题意;

C、等边三角形的对应边成比例,对应角相等,故正确,符合题意;

D、各边对应成比例的多边形的对应角不一定相等,故错误,不符合题意,

故选:C.【点睛】考查了相似图形的定义,解题的关键是牢记相似多边形的定义,难度较小.10、A【分析】由菱形的性质可证得为等边三角形,则可求得答案.【详解】四边形为菱形,,,,,为等边三角形,,故选:.【点睛】主要考查菱形的性质,利用菱形的性质证得为等边三角形是解题的关键.二、填空题(每小题3分,共24分)11、【分析】根据二次根式的性质,进行化简,即可.【详解】===∵∴原式=,故答案是:.【点睛】本题主要考查二次根式的性质,掌握二次根式的性质,是解题的关键.12、【分析】根据已知等式设a=2k,b=3k,代入式子可求出答案.【详解】解:由,可设a=2k,b=3k,(k≠0),故:,故答案:.【点睛】此题主要考查比例的性质,a、b都用k表示是解题的关键.13、【解析】由于两盏E、F距离水面都是8m,因而两盏景观灯之间的水平距离就是直线y=8与抛物线两交点的横坐标差的绝对值.故有,即,,.所以两盏警示灯之间的水平距离为:14、3.【分析】根据根的判别式即可求出答案.【详解】由题意可知:△=4﹣4(m﹣2)≥0,∴m≤3.故答案为:3.【点睛】考核知识点:一元二次方程根判别式.熟记根判别式是关键.15、【分析】如图,连接CE,可得AC=CE,由AC是半圆的直径,可得OA=OC=CE,根据平行线的性质可得∠COE=90°,根据含30°角的直角三角形的性质可得∠CEO=30°,即可得出∠ACE=60°,利用勾股定理求出OE的长,根据S阴影=S扇形ACE-S△CEO-S扇形AOD即可得答案.【详解】如图,连接CE,∵AC=6,AC、CE为扇形ACB的半径,∴CE=AC=6,∵OE//BC,∠ACB=90°,∴∠COE=180°-90°=90°,∴∠AOD=90°,∵AC是半圆的直径,∴OA=OC=CE=3,∴∠CEO=30°,OE==,∴∠ACE=60°,∴S阴影=S扇形ACE-S△CEO-S扇形AOD=--=,故答案为:【点睛】本题考查扇形面积、含30°角的直角三角形的性质及勾股定理,熟练掌握扇形面积公式并正确作出辅助线是解题关键.16、【分析】根据连续两次下调后,该楼盘的价格为每平方米5265元,可得出一元二次方程.【详解】根据题意可得,楼盘原价为每平方米6500元,每次下调的百分率为,经过两次下调即为,最终价格为每平方米5265元.故得:【点睛】本题主要考察了一元二次方程的应用,熟练掌握解平均变化率的相关方程题时解题的关键.17、0和-4.【分析】根据因式分解即可求解.【详解】解∴x1=0,x2=-4,故填:0和-4.【点睛】此题主要考查一元二次方程的求解,解题的关键是熟知一元二次方程的解法.18、【分析】根据相似三角形的判定得到△ABC∽△CBD,从而可根据其相似比求得AC的长.【详解】∵,,,∴∠BDC=∠BCA=90°,∠CBD+∠ABC=90°,BC=3,∴△ABC∽△CBD,

∴AC:CD=CB:BD,即AC:=3:2,∴AC=.

故答案为:.【点睛】本题考查相似三角形的判定和性质、勾股定理.三、解答题(共66分)19、(1)详见解析,(2)详见解析【分析】(1)连接AD,利用等腰三角形三线合一即可证明是中点;(2)连接OD,通过三角形中位线的性质得出,则有OD⊥DE,则可证明结论.【详解】(1)连接AD.∵AB是⊙O的直径,∴AD⊥BC,∵AB=AC,∴BD=DC,(2)连接OD.∵AO=BO,BD=DC,∴,∵DE⊥AC,∴OD⊥DE,∴DE是⊙O的切线.【点睛】本题主要考查等腰三角形三线合一和切线的判定,掌握等腰三角形三线合一和切线的判定方法是解题的关键.20、(1)9种结果,见解析;(2)P=【分析】(1)小明有3种分班情况,小林有3种分班情况,共有9种结果;(2)根据(1)即可列式求出两人不在同班的概率.【详解】(1)树状图如下:所有可能的结果共有9种.(2)两人不在同班的有6种,∴P(两人不在同班)==.【点睛】此题考查求事件的概率,熟记概率的公式,正确代入求值即可.21、(1)1;(2).【分析】(1)先计算乘方并对平方根化简,最后进行加减运算即可;(2)用含b的代数式表示a,代入式子即可求值.【详解】解:(1)==1(2)已知,可得,代入=.【点睛】本题考查实数的运算以及代入求值,熟练掌握相关计算法则是解题关键.22、(1)证明见解析;(2).【分析】(1)连接OF,只要证明OF∥BC,即可推出OF⊥CD,由此即可解决问题;(2)连接AF,利用∠D=30°,求出∠CBF=∠DBF=30°,得出BF=2,在利用勾股定理得出AB的长度,从而求出⊙O的半径.【详解】(1)连接OF,∵,∴∠CBF=∠FBA,∵OF=OB,∴∠FBO=∠OFB,∵点A、O、B三点共线,∴∠CBF=∠OFB,∴BC∥OF,∴∠OFC+∠C=180°,∵∠C=90°,∴∠OFC=90°,即OF⊥DC,∴CD为⊙O的切线;(2)连接AF,∵AB为直径,∴∠AFB=90°,∵∠D=30°,∴∠CBD=60°,∵,∴∠CBF=∠DBF=∠CBD=30°,在,CF=1,∠CBF=30°,∴BF=2CF=2,在,∠ABF=30°,BF=2,∴AF=AB,∴AB2=(AB)2+BF2,即AB2=4,∴,⊙O的半径为;【点睛】本题考查切线的判定、直角三角形30度角的性质、勾股定理,直径对的圆周角为90°等知识,解题的关键是灵

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论