河南省邓州市张村乡中学2025届九上数学期末检测试题含解析_第1页
河南省邓州市张村乡中学2025届九上数学期末检测试题含解析_第2页
河南省邓州市张村乡中学2025届九上数学期末检测试题含解析_第3页
河南省邓州市张村乡中学2025届九上数学期末检测试题含解析_第4页
河南省邓州市张村乡中学2025届九上数学期末检测试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河南省邓州市张村乡中学2025届九上数学期末检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.对于问题:如图1,已知∠AOB,只用直尺和圆规判断∠AOB是否为直角?小意同学的方法如图2:在OA、OB上分别取C、D,以点C为圆心,CD长为半径画弧,交OB的反向延长线于点E,若测量得OE=OD,则∠AOB=90º.则小意同学判断的依据是()A.等角对等边 B.线段中垂线上的点到线段两段距离相等C.垂线段最短 D.等腰三角形“三线合一”2.有下列四种说法:①半径确定了,圆就确定了;②直径是弦;③弦是直径;④半圆是弧,但弧不一定是半圆.其中,错误的说法有()A.1种 B.2种 C.3种 D.4种3.已知抛物线y=x2+bx+c的部分图象如图所示,若y<0,则x的取值范围是()A.﹣1<x<4 B.﹣1<x<3 C.x<﹣1或x>4 D.x<﹣1或x>34.一张圆形纸片,小芳进行了如下连续操作:将圆形纸片左右对折,折痕为AB,如图.将圆形纸片上下折叠,使A、B两点重合,折痕CD与AB相交于M,如图.将圆形纸片沿EF折叠,使B、M两点重合,折痕EF与AB相交于N,如图.连结AE、AF、BE、BF,如图.经过以上操作,小芳得到了以下结论:;四边形MEBF是菱形;为等边三角形;::.以上结论正确的有A.1个 B.2个 C.3个 D.4个5.如图,点在的边上,以原点为位似中心,在第一象限内将缩小到原来的,得到,点在上的对应点的的坐标为()A. B. C. D.6.如图,一飞镖游戏板由大小相等的小正方形格子构成,向游戏板随机投掷一枚飞镖,击中黑色区域的概率是()A. B. C. D.7.已知关于x的方程x2﹣x+m=0的一个根是3,则另一个根是()A.﹣6 B.6 C.﹣2 D.28.下面是投影屏上出示的抢答题,需要回答横线上符号代表的内容.如图,已知与相切于点,点在上.求证:.证明:连接并延长,交于点,连接.∵与相切于点,∴,∴.∵@是的直径,∴(直径所对的圆周角是90°),∴,∴◎.∵,∴▲(同弧所对的※相等),∴.下列选项中,回答正确的是()A.@代表 B.◎代表 C.▲代表 D.※代表圆心角9.下列说法错误的是()A.必然事件的概率为1 B.心想事成,万事如意是不可能事件C.平分弦(非直径)的直径垂直弦 D.的平方根是10.方程的解是()A.0 B.3 C.0或–3 D.0或311.小明随机地在如图正方形及其内部区域投针,则针扎到阴影区域的概率是()A. B. C. D.12.下列说法中,正确的是()A.被开方数不同的二次根式一定不是同类二次根式;B.只有被开方数完全相同的二次根式才是同类二次根式;C.和是同类二次根式;D.和是同类二次根式.二、填空题(每题4分,共24分)13.如图,将绕点逆时针旋转,得到,这时点恰好在同一直线上,则的度数为______.14.已知圆的半径是,则该圆的内接正六边形的面积是__________15.如图,过轴上的一点作轴的平行线,与反比例函数的图象交于点,与反比例函数,的图象交于点,若的面积为3,则的值为__________.16.如图,点,,均在的正方形网格格点上,过,,三点的外接圆除经过,,三点外还能经过的格点数为.17.由一些大小相同的小正方体搭成的几何体的主视图和俯视图,如图所示,则搭成该几何体的小正方体最多是_____个.18.计算:cos45°=______.三、解答题(共78分)19.(8分)如图,BC是半圆O的直径,D是弧AC的中点,四边形ABCD的对角线AC、BD交于点E.(1)求证:△DCE∽△DBC;(2)若CE=,CD=2,求直径BC的长.20.(8分)如图,一次函数y=kx+b与反比例函数y=的图象在第一象限交于A,B两点,B点的坐标为(3,2),连接OA,OB,过B作BD⊥y轴,垂足为D,交OA于C,若OC=CA.(1)求一次函数和反比例函数的表达式;(2)求△AOB的面积.21.(8分)如图,△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=α,AC、BD交于M(1)如图1,当α=90°时,∠AMD的度数为°(2)如图2,当α=60°时,∠AMD的度数为°(3)如图3,当△OCD绕O点任意旋转时,∠AMD与α是否存在着确定的数量关系?如果存在,请你用表示∠AMD,并图3进行证明;若不确定,说明理由.22.(10分)如图所示是某一蓄水池每小时的排水量V(m3/h)与排完水池中的水所用的时间t(h)之间的函数关系图象.(1)请你根据图象提供的信息求出此蓄水池的总蓄水量;(2)写出此函数的解析式;

(3)若要6h排完水池中的水,那么每小时的排水量应该是多少?23.(10分)如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(﹣2,﹣4)、B(0,﹣4)、C(1,﹣2).(1)△ABC关于原点O对称的图形是△A1B1C1,不用画图,请直接写出△A1B1C1的顶点坐标:A1,B1,C1;(2)在图中画出△ABC关于原点O逆时针旋转90°后的图形△A2B2C2,请直接写出△A2B2C2的顶点坐标:A2,B2,C2.24.(10分)如图,顶点为A(,1)的抛物线经过坐标原点O,与x轴交于点B.(1)求抛物线对应的二次函数的表达式;(2)过B作OA的平行线交y轴于点C,交抛物线于点D,求证:△OCD≌△OAB;(3)在x轴上找一点P,使得△PCD的周长最小,求出P点的坐标.25.(12分)方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(4,﹣1).(1)作出△ABC关于y轴对称的,并写出的坐标;(2)作出△ABC绕点O逆时针旋转90°后得到的,并求出所经过的路径长.26.“脱贫攻坚战”打响以来,全国贫困人口减少了8000多万人。某市为了扎实落实脱贫攻坚中“两不愁,三保障”的住房保障工作,2017年投入5亿元资金,之后投入资金逐年增长,2019年投入7.2亿元资金用于保障性住房建设.(1)求该市这两年投入资金的年平均增长率.(2)2020年该市计划保持相同的年平均増长率投入资金用于保障性住房建设,如果每户能得到保障房补助款3万元,则2020年该市能够帮助多少户建设保障性住房?

参考答案一、选择题(每题4分,共48分)1、B【分析】由垂直平分线的判定定理,即可得到答案.【详解】解:根据题意,∵CD=CE,OE=OD,∴AO是线段DE的垂直平分线,∴∠AOB=90°;则小意同学判断的依据是:线段中垂线上的点到线段两段距离相等;故选:B.【点睛】本题考查了垂直平分线的判定定理,解题的关键是熟练掌握垂直平分线的判定定理进行判断.2、B【分析】根据弦的定义、弧的定义、以及确定圆的条件即可解决.【详解】解:圆确定的条件是确定圆心与半径,是假命题,故此说法错误;直径是弦,直径是圆内最长的弦,是真命题,故此说法正确;弦是直径,只有过圆心的弦才是直径,是假命题,故此说法错误;④半圆是弧,但弧不一定是半圆,圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫半圆,所以半圆是弧.但比半圆大的弧是优弧,比半圆小的弧是劣弧,不是所有的弧都是半圆,是真命题,故此说法正确.

其中错误说法的是①③两个.故选B.【点睛】本题考查弦与直径的区别,弧与半圆的区别,及确定圆的条件,不要将弦与直径、弧与半圆混淆.3、B【解析】试题分析:观察图象可知,抛物线y=x2+bx+c与x轴的交点的横坐标分别为(﹣1,0)、(1,0),所以当y<0时,x的取值范围正好在两交点之间,即﹣1<x<1.故选B.考点:二次函数的图象.1061444、D【分析】根据折叠的性质可得∠BMD=∠BNF=90°,然后利用同位角相等,两直线平行可得CD∥EF,从而判定①正确;根据垂径定理可得BM垂直平分EF,再求出BN=MN,从而得到BM、EF互相垂直平分,然后根据对角线互相垂直平分的四边形是菱形求出四边形MEBF是菱形,从而得到②正确;根据直角三角形角所对的直角边等于斜边的一半求出∠MEN=30°,然后求出∠EMN=60°,根据等边对等角求出∠AEM=∠EAM,然后利用三角形的一个外角等于与它不相邻的两个内角的和求出∠AEM=30°,从而得到∠AEF=60°,同理求出∠AFE=60°,再根据三角形的内角和等于180°求出∠EAF=60°,从而判定△AEF是等边三角形,③正确;设圆的半径为r,求出EN=,则可得EF=2EN=,即可得S四边形AEBF:S扇形BEMF的答案,所以④正确.【详解】解:∵纸片上下折叠A、B两点重合,∴∠BMD=90°,∵纸片沿EF折叠,B、M两点重合,∴∠BNF=90°,∴∠BMD=∠BNF=90°,∴CD∥EF,故①正确;根据垂径定理,BM垂直平分EF,又∵纸片沿EF折叠,B、M两点重合,∴BN=MN,∴BM、EF互相垂直平分,∴四边形MEBF是菱形,故②正确;∵ME=MB=2MN,∴∠MEN=30°,∴∠EMN=90°-30°=60°,又∵AM=ME(都是半径),∴∠AEM=∠EAM,∴∠AEM=∠EMN=×60°=30°,∴∠AEF=∠AEM+∠MEN=30°+30°=60°,同理可求∠AFE=60°,∴∠EAF=60°,∴△AEF是等边三角形,故③正确;设圆的半径为r,则EN=,∴EF=2EN=,∴S四边形AEBF:S扇形BEMF=故④正确,综上所述,结论正确的是①②③④共4个.故选:D.【点睛】本题圆的综合题型,主要考查了翻折变换的性质,平行线的判定,对角线互相垂直平分的四边形是菱形,等边三角形的判定与性质.注意掌握折叠前后图形的对应关系是关键.5、A【解析】根据位似的性质解答即可.【详解】解:∵点P(8,6)在△ABC的边AC上,以原点O为位似中心,在第一象限内将△ABC缩小到原来的,得到△A′B′C′,∴点P在A′C′上的对应点P′的的坐标为:(4,3).故选A.【点睛】此题主要考查了位似变换,正确得出位似比是解题关键.如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k,进而结合已知得出答案.6、C【解析】利用黑色区域的面积除以游戏板的面积即可.【详解】黑色区域的面积=3×33×12×23×1=4,所以击中黑色区域的概率.故选C.【点睛】本题考查了几何概率:求概率时,已知和未知与几何有关的就是几何概率.计算方法是长度比,面积比,体积比等.7、C【分析】由于已知方程的二次项系数和一次项系数,所以要求方程的另一根,可利用一元二次方程的两根之和与系数的关系.【详解】解:设a是方程x1﹣5x+k=0的另一个根,则a+3=1,即a=﹣1.故选:C.【点睛】此题主要考查一元二次方程的根,解题的关键是熟知一元二次方程根与系数的关系.8、B【分析】根据圆周角定理和切线的性质以及余角的性质判定即可.【详解】解:由证明过程可知:A:@代表AE,故选项错误;B:由同角的余角相等可知:◎代表,故选项正确;C和D:由同弧所对的圆周角相等可得▲代表∠E,※代表圆周角,故选项错误;故选B.【点睛】本题考查了切线的性质,圆周角定理,余角的性质等知识点,熟记知识点是解题的关键.9、B【分析】逐一对选项进行分析即可.【详解】A.必然事件的概率为1,该选项说法正确,不符合题意;B.心想事成,万事如意是随机事件,该选项说法错误,符合题意;C.平分弦(非直径)的直径垂直弦,该选项说法正确,不符合题意;D.的平方根是,该选项说法正确,不符合题意;故选:B.【点睛】本题主要考查命题的真假,掌握随机事件,垂径定理,平方根的概念是解题的关键.10、D【解析】运用因式分解法求解.【详解】由得x(x-3)=0所以,x1=0,x2=3故选D【点睛】掌握因式分解法解一元二次方程.11、D【分析】根据几何概型的意义,求出圆的面积,再求出正方形的面积,算出其比值即可.【详解】解:设正方形的边长为2a,则圆的半径为a,则圆的面积为:,正方形的面积为:,∴针扎到阴影区域的概率是,故选:D.【点睛】本题考查几何概型的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积和总面积的比,这个比即事件(A)发生的概率.12、D【分析】根据同类二次根式的定义逐项分析即可.【详解】解:A、被开方数不同的二次根式若化简后被开方数相同,就是同类二次根式,故不正确;B.化成最简二次根式后,被开方数完全相同的二次根式才是同类二次根式,故不正确;C.和的被开方数不同,不是同类二次根式,故不正确;D.=和=,是同类二次根式,正确故选D.【点睛】本题考查了同类二次根式的定义,熟练掌握同类二次根式的定义是解答本题的关键.化成最简二次根式后,如果被开方式相同,那么这几个二次根式叫做同类二次根式.二、填空题(每题4分,共24分)13、20°【解析】先判断出∠BAD=140°,AD=AB,再判断出△BAD是等腰三角形,最后用三角形的内角和定理即可得出结论.【详解】∵将△ABC绕点A逆时针旋转140°,得到△ADE,∴∠BAD=140°,AD=AB,∵点B,C,D恰好在同一直线上,∴△BAD是顶角为140°的等腰三角形,∴∠B=∠BDA,∴∠B=(180°−∠BAD)=20°,故答案为:20°【点睛】此题考查旋转的性质,等腰三角形的判定与性质,三角形内角和定理,解题关键在于判断出△BAD是等腰三角形14、【分析】根据正六边形被它的半径分成六个全等的等边三角形,再根据等边三角形的边长,求出等边三角形的高,再根据面积公式即可得出答案.【详解】解:连接、,作于,等边三角形的边长是2,,等边三角形的面积是,正六边形的面积是:;故答案为:.【点睛】本题考查的是正多边形和圆的知识,解题的关键要记住正六边形的特点,它被半径分成六个全等的等边三角形.15、-6.【分析】由AB∥x轴,得到S△AOP=,S△BOP=,根据的面积为3得到,即可求得答案.【详解】∵AB∥x轴,∴S△AOP=,S△BOP=,∵S△AOB=S△AOP+S△BOP=3,∴,∴-m+n=6,∴m-n=-6,故答案为:-6.【点睛】此题考查反比例函数中k的几何意义,由反比例函数图象上的一点作x轴(或y轴)的垂线,再连接此点与原点,所得三角形的面积为,解题中注意k的符号.16、1.【解析】试题分析:根据圆的确定先做出过A,B,C三点的外接圆,从而得出答案.如图,分别作AB、BC的中垂线,两直线的交点为O,以O为圆心、OA为半径作圆,则⊙O即为过A,B,C三点的外接圆,由图可知,⊙O还经过点D、E、F、G、H这1个格点,故答案为1.考点:圆的有关性质.17、1【分析】根据几何体的三视图可进行求解.【详解】解:根据题意得:则搭成该几何体的小正方体最多是1+1+1+2+2=1(个).故答案为1.【点睛】本题主要考查几何体的三视图,熟练掌握几何体的三视图是解题的关键.18、【分析】根据特殊角的三角函数值计算即可.【详解】解:根据特殊角的三角函数值可知:cos45°=,故答案为.【点睛】本题主要考查了特殊角的三角函数值,比较简单,熟练掌握特殊角的三角函数值是解答的关键.三、解答题(共78分)19、(1)见解析;(2)2【分析】(1)由等弧所对的圆周角相等可得∠ACD=∠DBC,且∠BDC=∠EDC,可证△DCE∽△DBC;(2)由勾股定理可求DE=1,由相似三角形的性质可求BC的长.【详解】(1)∵D是弧AC的中点,∴,∴∠ACD=∠DBC,且∠BDC=∠EDC,∴△DCE∽△DBC;(2)∵BC是直径,∴∠BDC=90°,∴DE1.∵△DCE∽△DBC,∴,∴,∴BC=2.【点睛】本题考查了圆周角定理、相似三角形的判定和性质、勾股定理等知识,证明△DCE∽△DBC是解答本题的关键.20、(1)y=;y=-x+6(2)【解析】(1)先利用待定系数法求出反比例函数解析式,进而确定出点A的坐标,再用待定系数法求出一次函数解析式;(2)先求出OB的解析式,进而求出AG,用三角形的面积公式即可得出结论.【详解】解:(1)如图,过点A作AF⊥x轴交BD于E,∵点B(3,2)在反比例函数的图象上,∴a=3×2=6,∴反比例函数的表达式为,∵B(3,2),∴EF=2,∵BD⊥y轴,OC=CA,∴AE=EF=AF,∴AF=4,∴点A的纵坐标为4,∵点A在反比例函数图象上,∴A(,4),∴,∴,∴一次函数的表达式为;(2)如图1,过点A作AF⊥x轴于F交OB于G,∵B(3,2),∴直线OB的解析式为y=,∴G(,1),∵A(,4),∴AG=4﹣1=3,∴S△AOB=S△AOG+S△ABG=×3×3=.【点睛】此题主要考查了待定系数法,三角形的面积公式,三角形的中位线,解本题的关键是用待定系数法求出直线AB的解析式.21、(1)1;(2)2;(3)∠AMD=180°﹣α,证明详见解析.【解析】(1)如图1中,设OA交BD于K.只要证明△BOD≌△AOC,推出∠OBD=∠OAC,由∠AKM=∠BKO,可得∠AMK=∠BOK=1°;(2)如图2中,设OA交BD于K.只要证明△BOD≌△AOC,推出∠OBD=∠OAC,由∠AKM=∠BKO,推出∠AMK=∠BOK=2°;(3)如图3中,设OA交BD于K.只要证明△BOD≌△AOC,可得∠OBD=∠OAC,由∠AKO=∠BKM,推出∠AOK=∠BMK=α.可得∠AMD=180°-α.【详解】(1)如图1中,设OA交BD于K.∵OA=OB,OC=OD,∠AOB=∠COD=α,∴∠BOD=∠AOC,∴△BOD≌△AOC,∴∠OBD=∠OAC,∵∠AKM=∠BKO,∴∠AMK=∠BOK=1°.故答案为1.(2)如图2中,设OA交BD于K.∵OA=OB,OC=OD,∠AOB=∠COD=α,∴∠BOD=∠AOC,∴△BOD≌△AOC,∴∠OBD=∠OAC,∵∠AKM=∠BKO,∴∠AMK=∠BOK=2°.故答案为2.(3)如图3中,设OA交BD于K.∵OA=OB,OC=OD,∠AOB=∠COD=α,∴∠BOD=∠AOC,∴△BOD≌△AOC,∴∠OBD=∠OAC,∵∠AKO=∠BKM,∴∠AOK=∠BMK=α.∴∠AMD=180°﹣α.【点睛】本题考查几何变换综合题、等腰三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,学会利用:“8字型”证明角相等.22、(1)48000m3(2)V=(3)8000m3【解析】(1)此题根据函数图象为双曲线的一支,可设V=,再把点(12,4000)代入即可求出答案;(2)此题根据点(12,4000)在此函数图象上,利用待定系数法求出函数的解析式;(3)此题须把t=6代入函数的解析式即可求出每小时的排水量;【详解】(1)设V=.∵点(12,4000)在此函数图象上,∴蓄水量为12×4000=48000m3;(2)∵点(12,4000)在此函数图象上,∴4000=,k=48000,∴此函数的解析式V=;(3)∵当t=6时,V==8000m3;∴每小时的排水量应该是8000m3.【点睛】主要考查了反比例函数的应用.解题的关键是根据实际意义列出函数关系式,从实际意义中找到对应的变量的值,利用待定系数法求出函数解析式.会用不等式解决实际问题.23、(1)(2,4),(0,4),(﹣1,2);(2)作图见解析;(4,﹣2),(4,0),(2,1).【分析】(1)根据中心对称图形的概念求解可得;(2)利用旋转变换的定义和性质作出对应点,再首尾顺次连接即可得.【详解】(1)△A1B1C1的顶点坐标:A1(2,4),B1(0,4),C1(﹣1,2),故答案为:(2,4),(0,4),(﹣1,2).(2)如图所示,△A2B2C2即为所求,A2(4,﹣2),B2(4,0),C2(2,1),故答案为:(4,﹣2),(4,0),(2,1).【点睛】本题考查中心对称图形和旋转变换,作旋转变换时需注意旋转中心和旋转角,分清逆时针和顺时针旋转.24、(1)y=﹣x1+x;(1)证明见解析;(3)P(﹣,0).【分析】(1)用待定系数法求出抛物线解析式;(1)先求出直线OA对应的一次函数的表达式为y=x.再求出直线BD的表达式为y=x﹣1.最后求出交点坐标C,D即可;(3)先判断出C'D与x轴的交点即为点P,它使得△PCD的周长最小.作辅助线判断出△C'PO∽△C'DQ即可.【详解】解:(1)∵抛物线顶点为A(,1),设抛物线解析式为y=a(x﹣)1+1,将原点坐标(0,0)在抛物线上,∴0=a()1+1∴a=﹣,∴抛物线的表达式为:y=﹣x1+x.(1)令y=0,得0=﹣x1+x,∴x=0(舍),或x=1∴B点坐标为:(1,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论