![广东省东莞市横沥爱华学校2025届数学九上期末复习检测模拟试题含解析_第1页](http://file4.renrendoc.com/view4/M00/0D/3D/wKhkGGZ9p4mACG3lAAIURWcMgxI308.jpg)
![广东省东莞市横沥爱华学校2025届数学九上期末复习检测模拟试题含解析_第2页](http://file4.renrendoc.com/view4/M00/0D/3D/wKhkGGZ9p4mACG3lAAIURWcMgxI3082.jpg)
![广东省东莞市横沥爱华学校2025届数学九上期末复习检测模拟试题含解析_第3页](http://file4.renrendoc.com/view4/M00/0D/3D/wKhkGGZ9p4mACG3lAAIURWcMgxI3083.jpg)
![广东省东莞市横沥爱华学校2025届数学九上期末复习检测模拟试题含解析_第4页](http://file4.renrendoc.com/view4/M00/0D/3D/wKhkGGZ9p4mACG3lAAIURWcMgxI3084.jpg)
![广东省东莞市横沥爱华学校2025届数学九上期末复习检测模拟试题含解析_第5页](http://file4.renrendoc.com/view4/M00/0D/3D/wKhkGGZ9p4mACG3lAAIURWcMgxI3085.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省东莞市横沥爱华学校2025届数学九上期末复习检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.下列函数中,当x>0时,y随x的增大而增大的是()A.B.C.D.2.抛物线y=(x﹣1)2+3的顶点坐标是()A.(1,3) B.(﹣1,3) C.(1,﹣3) D.(3,﹣1)3.两个相似多边形的面积比是9∶16,其中小多边形的周长为36cm,则较大多边形的周长为)A.48cm B.54cm C.56cm D.64cm4.一个扇形半径30cm,圆心角120°,用它作一个圆锥的侧面,则圆锥底面半径为()A.5cm B.10cm C.20cm D.30cm5.用配方法解一元二次方程,可将方程配方为A. B. C. D.6.有人预测2020年东京奥运会上中国女排夺冠的概率是80%,对这个说法正确的理解应该是().A.中国女排一定会夺冠 B.中国女排一定不会夺冠C.中国女排夺冠的可能性比较大 D.中国女排夺冠的可能性比较小7.已知:抛物线y1=x2+2x-3与x轴交于A、B两点(点A在点B的左侧),抛物线y2=x2-2ax-1(a>0)与x轴交于C、D两点(点C在点D的左侧),在使y1>0且y2≤0的x的取值范围内恰好只有一个整数时,a的取值范围是()A.0<a≤ B.a≥ C.≤a< D.<a≤8.如图,AD是半圆O的直径,AD=12,B,C是半圆O上两点.若,则图中阴影部分的面积是()A.6π B.12π C.18π D.24π9.己知⊙的半径是一元二次方程的一个根,圆心到直线的距离.则直线与⊙的位置关系是A.相离 B.相切 C.相交 D.无法判断10.如图,轴右侧一组平行于轴的直线···,两条相邻平行线之间的距离均为,以点为圆心,分别以···为半径画弧,分别交轴,···于点···则点的坐标为()A. B.C. D.11.已知二次函数的图象如图所示,下列结论:①;②;③;④.其中正确的结论是()A.①② B.①③ C.①③④ D.①②③12.若两个相似三角形的相似比是1:2,则它们的面积比等于()A.1: B.1:2 C.1:3 D.1:4二、填空题(每题4分,共24分)13.若关于x的一元二次方程有两个不相等的实数根,则k的取值范围是______.14.△ABC是等边三角形,点O是三条高的交点.若△ABC以点O为旋转中心旋转后能与原来的图形重合,则△ABC旋转的最小角度是____________.15.某人感染了某种病毒,经过两轮传染共感染了121人.设该病毒一人平均每轮传染x人,则关于x的方程为_________.16.已知x1、x2是关于x的方程x2+4x5=0的两个根,则x1x2=_____.17.如图,将绕点逆时针旋转,得到,这时点恰好在同一直线上,则的度数为______.18.如图,在矩形ABCD中,AB=4,AD=3,以点A为圆心,AD长为半径画弧,交AB于点E,图中阴影部分的面积是______(结果保留π).三、解答题(共78分)19.(8分)如图,矩形ABCD中,AB=4,BC=6,E是BC边的中点,点P在线段AD上,过P作PF⊥AE于F,设PA=x.(1)求证:△PFA∽△ABE;(2)当点P在线段AD上运动时,设PA=x,是否存在实数x,使得以点P,F,E为顶点的三角形也与△ABE相似?若存在,请求出x的值;若不存在,请说明理由;(3)探究:当以D为圆心,DP为半径的⊙D与线段AE只有一个公共点时,请直接写出x满足的条件:.20.(8分)如图,在单位长度为1的正方形网格中,一段圆弧经过网格的交点A、B、C.(1)请完成如下操作:①以点O为原点、竖直和水平方向为轴、网格边长为单位长,建立平面直角坐标系;②根据图形提供的信息,标出该圆弧所在圆的圆心D,并连接AD、CD.(2)请在(1)的基础上,完成下列填空:①写出点的坐标:C;D();②⊙D的半径=(结果保留根号);③若扇形ADC是一个圆锥的侧面展开图,则该圆锥的底面的面积为;(结果保留π)④若E(7,0),试判断直线EC与⊙D的位置关系,并说明你的理由.21.(8分)解下列方程:(1)x2﹣6x+9=0;(2)x2﹣4x=12;(3)3x(2x﹣5)=4x﹣1.22.(10分)如图,一次函数y=kx+b与反比例函数y=6x(x>0)的图象交于A(m,6),B(n,3(1)求一次函数的解析式;(2)根据图象直接写出kx+b﹣6x>0时x(3)若M是x轴上一点,且△MOB和△AOB的面积相等,求M点坐标.23.(10分)解方程:x2-7x-18=0.24.(10分)如图,△ABC.(1)尺规作图:①作出底边的中线AD;②在AB上取点E,使BE=BD;(2)在(1)的基础上,若AB=AC,∠BAC=120°,求∠ADE的度数.25.(12分)解方程:(1)x2﹣3x+1=0;(2)(x+1)(x+2)=2x+1.26.(1)解方程:x(x﹣3)=x﹣3;(2)用配方法解方程:x2﹣10x+6=0
参考答案一、选择题(每题4分,共48分)1、B【分析】根据二次函数、一次函数、反比例函数的增减性,结合自变量的取值范围,逐一判断【详解】解:A、,一次函数,k<0,故y随着x增大而减小,错误;B、(x>0),故当图象在对称轴右侧,y随着x的增大而增大,正确;C、,k=1>0,分别在一、.三象限里,y随x的增大而减小,错误;D、(x>0),故当图象在对称轴右侧,y随着x的增大而减小,错误.故选B.【点睛】本题考查一次函数,二次函数及反比例函数的增减性,掌握函数图像性质利用数形结合思想解题是本题的解题关键.2、A【分析】根据顶点式解析式写出顶点坐标即可.【详解】解:抛物线y=(x﹣1)2+3的顶点坐标是(1,3).故选:A.【点晴】本题考查了二次函数的性质,主要是利用顶点式解析式写顶点的方法,需熟记.3、A【解析】试题分析:根据相似多边形对应边之比、周长之比等于相似比,而面积之比等于相似比的平方计算即可.解:两个相似多边形的面积比是9:16,面积比是周长比的平方,则大多边形与小多边形的相似比是4:1.相似多边形周长的比等于相似比,因而设大多边形的周长为x,则有=,解得:x=2.大多边形的周长为2cm.故选A.考点:相似多边形的性质.4、B【解析】试题解析:设此圆锥的底面半径为r,2πr=,r=10cm故选B.考点:弧长的计算.5、A【解析】试题解析:故选A.6、C【分析】概率越接近1,事件发生的可能性越大,概率越接近0,则事件发生的可能性越小,根据概率的意义即可得出答案.【详解】∵中国女排夺冠的概率是80%,∴中国女排夺冠的可能性比较大故选C.【点睛】本题考查随机事件发生的可能性,解题的关键是掌握概率的意义.7、C【分析】根据题意可知的对称轴为可知使y1>0且y2≤0的x的取值范围内恰好只有一个整数时,只要符合将代入中,使得,且将代入中使得即可求出a的取值范围.【详解】由题意可知的对称轴为可知对称轴再y轴的右侧,由与x轴交于A、B两点(点A在点B的左侧)可知当时可求得使的x的取值范围内恰好只有一个整数时只要符合将代入中,使得,且将代入中使得即求得解集为:故选C【点睛】本题主要考查了二次函数图像的性质,利用数形结合思想解决二次函数与不等式问题是解题关键.8、A【分析】根据圆心角与弧的关系得到∠AOB=∠BOC=∠COD=60°,根据扇形面积公式计算即可.【详解】∵,∴∠AOB=∠BOC=∠COD=60°.∴阴影部分面积=.故答案为A.【点睛】本题考查的知识点是扇形面积的计算,解题关键是利用圆心角与弧的关系得到∠AOB=∠BOC=∠COD=60°.9、A【分析】在判断直线与圆的位置关系时,通常要得到圆心到直线的距离,然后再利用d与r的大小关系进行判断;在直线与圆的问题中,充分利用构造的直角三角形来解决问题,直线与圆的位置关系:①当d>r时,直线与圆相离;②当d=r时,直线与圆相切;③当d<r时,直线与圆相交.【详解】∵的解为x=4或x=-1,∴r=4,∵4<6,即r<d,∴直线和⊙O的位置关系是相离.故选A.【点睛】本题主要考查了直线与圆的位置关系,一元二次方程的定义及一般形式,掌握直线与圆的位置关系,一元二次方程的定义及一般形式是解题的关键.10、C【分析】根据题意,利用勾股定理求出,,,,的纵坐标,得到各点坐标,找到规律即可解答.【详解】如图,连接、、,点的纵坐标为,点的坐标为,点的纵坐标为,点的坐标为,点的纵坐标为,点的坐标为,点的纵坐标为,点的坐标为,∴点的坐标为,故选:C【点睛】本题考查了一次函数图象上点的坐标特征,熟练运用勾股定理是解题的关键.11、C【分析】由抛物线开口方向得到a>0,由抛物线的对称轴方程得到b=-2a,则可对①②进行判断;利用判别式的意义可对③进行判断;利用平方差公式得到(a+b)2-b2=(a+b-b)(a+b+b),然后把b=-2a代入可对④进行判断.【详解】∵抛物线开口向上,
∴a>0,
∵抛物线的对称轴为直线x=-=1,
∴b=-2a<0,所以①正确;
∴b+2a=0,所以②错误;
∵抛物线与x轴有2个交点,
∴△=b2-4ac>0,所以③正确;
∵(a+b)2-b2=(a+b-b)(a+b+b)=a(a+2b)=a(a-4a)=-3a2<0,
∴(a+b)2<b2,所以④正确.
故选:C.【点睛】考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置.当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(0,c).抛物线与x轴交点个数由△决定:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.12、D【分析】根据相似三角形面积的比等于相似比的平方解答即可.【详解】解:∵两个相似三角形的相似比是1:2,∴这两个三角形们的面积比为1:4,故选:D.【点睛】此题考查相似三角形的性质,掌握相似三角形面积的比等于相似比的平方是解决此题的关键.二、填空题(每题4分,共24分)13、k<5且k≠1.【解析】试题解析:∵关于x的一元二次方程有两个不相等的实数根,解得:且故答案为且14、120°.【解析】试题分析:若△ABC以O为旋转中心,旋转后能与原来的图形重合,根据旋转变化的性质,可得△ABC旋转的最小角度为180°﹣60°=120°.故答案为120°.考点:旋转对称图形.15、【分析】设每轮传染中平均一个人传染了x个人,则第一轮传染了x个人,第二轮作为传染源的是(x+1)人,则传染x(x+1)人,依题意列方程:1+x+x(1+x)=1.【详解】整理得,.
故答案为:.【点睛】本题考查了由实际问题抽象出一元二次方程.关键是得到两轮传染数量关系,从而可列方程求解.16、-1【分析】根据根与系数的关系即可求解.【详解】∵x1、x2是关于x的方程x2+1x5=0的两个根,∴x1x2=-=-1,故答案为:-1.【点睛】此题主要考查根与系数的关系,解题的关键是熟知x1x2=-.17、20°【解析】先判断出∠BAD=140°,AD=AB,再判断出△BAD是等腰三角形,最后用三角形的内角和定理即可得出结论.【详解】∵将△ABC绕点A逆时针旋转140°,得到△ADE,∴∠BAD=140°,AD=AB,∵点B,C,D恰好在同一直线上,∴△BAD是顶角为140°的等腰三角形,∴∠B=∠BDA,∴∠B=(180°−∠BAD)=20°,故答案为:20°【点睛】此题考查旋转的性质,等腰三角形的判定与性质,三角形内角和定理,解题关键在于判断出△BAD是等腰三角形18、12﹣π【分析】用矩形的面积减去四分之一圆的面积即可求得阴影部分的面积.【详解】解:在矩形中,,故答案为:.【点睛】本题考查了扇形的面积的计算及矩形的性质,能够了解两个扇形构成半圆是解答本题的关键.三、解答题(共78分)19、(1)证明见解析;(2)3或.(3)或0<【分析】(1)根据矩形的性质,结合已知条件可以证明两个角对应相等,从而证明三角形相似;
(2)由于对应关系不确定,所以应针对不同的对应关系分情况考虑:当时,则得到四边形为矩形,从而求得的值;当时,再结合(1)中的结论,得到等腰.再根据等腰三角形的三线合一得到是的中点,运用勾股定理和相似三角形的性质进行求解.
(3)此题首先应针对点的位置分为两种大情况:①与AE相切,②与线段只有一个公共点,不一定必须相切,只要保证和线段只有一个公共点即可.故求得相切时的情况和相交,但其中一个交点在线段外的情况即是的取值范围.【详解】(1)证明:∵矩形ABCD,∴AD∥BC.∴∠PAF=∠AEB.又∵PF⊥AE,∴△PFA∽△ABE.(2)情况1,当△EFP∽△ABE,且∠PEF=∠EAB时,则有PE∥AB∴四边形ABEP为矩形,∴PA=EB=3,即x=3.情况2,当△PFE∽△ABE,且∠PEF=∠AEB时,∵∠PAF=∠AEB,∴∠PEF=∠PAF.∴PE=PA.∵PF⊥AE,∴点F为AE的中点,即∴满足条件的x的值为3或(3)或【点睛】两组角对应相等,两三角形相似.20、(1)①答案见解析;②答案见解析;(2)①C(6,2);D(2,0);②;③;④相切,理由见解析.【分析】(1)①按题目的要求作图即可②根据圆心到A、B、C距离相等即可得出D点位置;(2)①C(6,2),弦AB,BC的垂直平分线的交点得出D(2,0);
②OA,OD长已知,△OAD中勾股定理求出⊙D的半径=2;
③求出∠ADC的度数,得弧ADC的周长,求出圆锥的底面半径,再求圆锥的底面的面积;
④△CDE中根据勾股定理的逆定理得∠DCE=90°,直线EC与⊙D相切.【详解】(1)①②如图所示:(2)①故答案为:C(6,2);D(2,0);②⊙D的半径=;故答案为:;③解:AC=,CD=2,AD2+CD2=AC2,∴∠ADC=90°.扇形ADC的弧长=圆锥的底面的半径=,圆锥的底面的面积为π()2=;故答案为:;
(4)直线EC与⊙D相切.
证明:∵CD2+CE2=DE2=25,)∴∠DCE=90°.∴直线EC与⊙D相切.【点睛】本题综合考查了图形的性质和坐标的确定,是综合性较强,难度较大的综合题,圆的圆心D是关键.21、(1)x1=x2=3;(2)x1=﹣2,x2=6;(3)x1=,x2=.【分析】(1)运用因式分解法即可求解;(2)方程移项后运用因式分解法求解即可;(3)方程移项后运用因式分解法求解即可.【详解】(1)x2﹣6x+9=0(x﹣3)2=0x﹣3=0∴x1=x2=3;(2)x2﹣4x=12x2﹣4x﹣12=0(x+2)(x﹣6)=0x+2=0或x﹣6=0∴x1=﹣2,x2=6;(3)3x(2x﹣5)=4x﹣13x(2x﹣5)﹣2(2x﹣5)=0(2x﹣5)(3x﹣2)=02x﹣5=0或3x﹣2=0∴x1=,x2=.【点睛】本题考查了解一元二次方程,解决本题的关键是熟练掌握一元二次方程的解法.22、(1)一次函数的解析式为y=﹣3x+9;(2)1<x<2;(3)点M的坐标为(3,0)或(﹣3,0).【解析】(1)首先求出A、B两点坐标,再利用待定系数法即可解决问题;(2)观察图象,一次函数的图象在反比例函数的图象上方,写出x的取值范围即可;(3)设直线AB交x轴于P,则P(3,0),设M(m,0),由S△AOB=S△OBM,可得S△AOP-S△OBP=S△OBM,列出方程即可解决问题.【详解】(1)∵点A(m,6)、B(n,3)在函数y=6∴m=1,n=2,∴A点坐标是(1,6),B点坐标是(2,3),把(1,6)、(2,3)代入一次函数y=kx+b中,得k+b=62k+b=3解得k=-3b=9∴一次函数的解析式为y=-3x+9;(2)观察图象可知,kx+b-6x>0时x的取值范围是1<x<2(3)设直线AB交x轴于P,则P(3,0),设M(m,0),∵S△AOB=S△OBM,∴S△AOP-S△OBP=S△OBM,∴12解得m=±3,∴点M的坐标为(3,0)或(-3,0).【点睛】本题考查一次函数与反比例函数的交点、待定系数法、一元一次不等式等知识,解题的关键是熟练掌握待定系数法,学会利用图象解决问题,学会构建方程解决问题.23、【分析】利用因式分解法求解即可.【详解】因式分解,得于是得或故原方程的解为:.【点睛】本题考查了一元二次方程的解法,其主要解法包括:直接开方法、配方法、公式法、因式分解法(十字相乘法)等,熟记各解法是解题关键.24、(1)①详见解析;②详见解析;(2)15°.【分析】(1)①作线段BC的垂直平分线可得BC的中点D,连接AD即可;②以B为圆心,BD为半径画弧交AB于
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年曲阜远东职业技术学院高职单招语文2018-2024历年参考题库频考点含答案解析
- 2025年银川年货运从业资格证考试模拟
- 2025年外研版选修四地理下册阶段测试试卷
- 2025年外研版三年级起点九年级地理上册月考试卷含答案
- 机械租赁合同(2篇)
- 服务支付协议书(2篇)
- 村委与物业合同(2篇)
- 2025年粤教版九年级历史上册阶段测试试卷
- 2025年人教版八年级生物上册月考试卷
- 2025年山西国际商务职业学院高职单招职业技能测试近5年常考版参考题库含答案解析
- 【人教版化学】必修1 知识点默写小纸条(答案背诵版)
- 江苏省无锡市2023-2024学年八年级上学期期末数学试题(原卷版)
- 对口升学语文模拟试卷(10)-江西省(解析版)
- 《奥特莱斯业态浅析》课件
- 2022年湖南省公务员录用考试《申论》真题(县乡卷)及答案解析
- 2024年-急诊气道管理共识课件
- 小学语文中段整本书阅读的指导策略研究 中期报告
- 浙教版2023-2024学年数学八年级上册期末复习卷(含答案)
- 运动训练与康复治疗培训资料
- 小班绘本教学《藏在哪里了》课件
- 老师呀请你别生气教学反思
评论
0/150
提交评论