湖北省武汉新洲区五校联考2024届中考数学全真模拟试卷含解析_第1页
湖北省武汉新洲区五校联考2024届中考数学全真模拟试卷含解析_第2页
湖北省武汉新洲区五校联考2024届中考数学全真模拟试卷含解析_第3页
湖北省武汉新洲区五校联考2024届中考数学全真模拟试卷含解析_第4页
湖北省武汉新洲区五校联考2024届中考数学全真模拟试卷含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖北省武汉新洲区五校联考2024届中考数学全真模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图,把△ABC剪成三部分,边AB,BC,AC放在同一直线上,点O都落在直线MN上,直线MN∥AB,则点O是△ABC的()A.外心 B.内心 C.三条中线的交点 D.三条高的交点2.如图,一个可以自由转动的转盘被等分成6个扇形区域,并涂上了相应的颜色,转动转盘,转盘停止后,指针指向蓝色区域的概率是()A. B.C. D.3.下列各数中,无理数是()A.0 B. C. D.π4.的整数部分是()A.3 B.5 C.9 D.65.如图,在等边三角形ABC中,点P是BC边上一动点(不与点B、C重合),连接AP,作射线PD,使∠APD=60°,PD交AC于点D,已知AB=a,设CD=y,BP=x,则y与x函数关系的大致图象是()A. B. C. D.6.下列计算正确的是()A.(a2)3=a6 B.a2•a3=a6 C.a3+a4=a7 D.(ab)3=ab37.下列生态环保标志中,是中心对称图形的是()A.B.C.D.8.如图所示的图形,是下面哪个正方体的展开图()A. B. C. D.9.如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为()A.2 B.2 C.3 D.10.如图,在Rt△ABC中,∠C=90°,BC=2,∠B=60°,⊙A的半径为3,那么下列说法正确的是()A.点B、点C都在⊙A内 B.点C在⊙A内,点B在⊙A外C.点B在⊙A内,点C在⊙A外 D.点B、点C都在⊙A外二、填空题(共7小题,每小题3分,满分21分)11.已知二次函数y=ax2+bx(a≠0)的最小值是﹣3,若关于x的一元二次方程ax2+bx+c=0有实数根,则c的最大值是_____.12.若代数式x2﹣6x+b可化为(x+a)2﹣5,则a+b的值为____.13.如图,点A在双曲线上,点B在双曲线上,且AB∥x轴,C、D在x轴上,若四边形ABCD为矩形,则它的面积为.14.对于实数a,b,定义运算“*”:a*b=,例如:因为4>2,所以4*2=42﹣4×2=8,则(﹣3)*(﹣2)=___________.15.如图,已知直线y=x+4与双曲线y=(x<0)相交于A、B两点,与x轴、y轴分别相交于D、C两点,若AB=2,则k=_____.16.因式分解:2b2a2﹣a3b﹣ab3=_____.17.在▱ABCD中,AB=3,BC=4,当▱ABCD的面积最大时,下列结论:①AC=5;②∠A+∠C=180o;③AC⊥BD;④AC=BD.其中正确的有_________.(填序号)三、解答题(共7小题,满分69分)18.(10分)“六一”期间,小张购述100只两种型号的文具进行销售,其中A种型号的文具进价为10元/只,售价为12元,B种型号的文具进价为15元1只,售价为23元/只.(1)小张如何进货,使进货款恰好为1300元?(2)如果购进A型文具的数量不少于B型文具数量的倍,且要使销售文具所获利润不低于500元,则小张共有几种不同的购买方案?哪一种购买方案使销售文具所获利润最大?19.(5分)如图所示,内接于圆O,于D;(1)如图1,当AB为直径,求证:;(2)如图2,当AB为非直径的弦,连接OB,则(1)的结论是否成立?若成立请证明,不成立说明由;(3)如图3,在(2)的条件下,作于E,交CD于点F,连接ED,且,若,,求CF的长度.20.(8分)如图,二次函数y=﹣+mx+4﹣m的图象与x轴交于A、B两点(A在B的左侧),与),轴交于点C.抛物线的对称轴是直线x=﹣2,D是抛物线的顶点.(1)求二次函数的表达式;(2)当﹣<x<1时,请求出y的取值范围;(3)连接AD,线段OC上有一点E,点E关于直线x=﹣2的对称点E'恰好在线段AD上,求点E的坐标.21.(10分)﹣(﹣1)2018+﹣()﹣122.(10分)两个全等的等腰直角三角形按如图方式放置在平面直角坐标系中,OA在x轴上,已知∠COD=∠OAB=90°,OC=,反比例函数y=的图象经过点B.求k的值.把△OCD沿射线OB移动,当点D落在y=图象上时,求点D经过的路径长.23.(12分)为了预防“甲型H1N1”,某学校对教室采用药薰消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y(mg)与时间x(min)成正比例,药物燃烧后,y与x成反比例,如图所示,现测得药物8min燃毕,此时室内空气每立方米的含药量为6mg,请你根据题中提供的信息,解答下列问题:药物燃烧时,求y关于x的函数关系式?自变量x的取值范围是什么?药物燃烧后y与x的函数关系式呢?研究表明,当空气中每立方米的含药量低于1.6mg时,学生方可进教室,那么从消毒开始,至少需要几分钟后,学生才能进入教室?研究表明,当空气中每立方米的含药量不低于3mg且持续时间不低于10min时,才能杀灭空气中的毒,那么这次消毒是否有效?为什么?24.(14分)如图,某校数学兴趣小组要测量大楼AB的高度,他们在点C处测得楼顶B的仰角为32°,再往大楼AB方向前进至点D处测得楼顶B的仰角为48°,CD=96m,其中点A、D、C在同一直线上.求AD的长和大楼AB的高度(结果精确到2m)参考数据:sin48°≈2.74,cos48°≈2.67,tan48°≈2.22,≈2.73

参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】

利用平行线间的距离相等,可知点到、、的距离相等,然后可作出判断.【详解】解:如图,过点作于,于,于.图1,(夹在平行线间的距离相等).如图:过点作于,作于E,作于.由题意可知:,,,∴,∴图中的点是三角形三个内角的平分线的交点,点是的内心,故选B.【点睛】本题考查平行线间的距离,角平分线定理,三角形的内心,解题的关键是判断出.2、B【解析】试题解析:∵转盘被等分成6个扇形区域,而黄色区域占其中的一个,∴指针指向黄色区域的概率=.故选A.考点:几何概率.3、D【解析】

利用无理数定义判断即可.【详解】解:π是无理数,故选:D.【点睛】此题考查了无理数,弄清无理数的定义是解本题的关键.4、C【解析】解:∵=﹣1,=﹣…=﹣+,∴原式=﹣1+﹣+…﹣+=﹣1+10=1.故选C.5、C【解析】

根据等边三角形的性质可得出∠B=∠C=60°,由等角的补角相等可得出∠BAP=∠CPD,进而即可证出△ABP∽△PCD,根据相似三角形的性质即可得出y=-x2+x,对照四个选项即可得出.【详解】∵△ABC为等边三角形,

∴∠B=∠C=60°,BC=AB=a,PC=a-x.

∵∠APD=60°,∠B=60°,

∴∠BAP+∠APB=120°,∠APB+∠CPD=120°,

∴∠BAP=∠CPD,

∴△ABP∽△PCD,∴,即,∴y=-x2+x.故选C.【点睛】考查了动点问题的函数图象、相似三角形的判定与性质,利用相似三角形的性质找出y=-x2+x是解题的关键.6、A【解析】分析:根据幂的乘方、同底数幂的乘法、积的乘方公式即可得出答案.详解:A、幂的乘方法则,底数不变,指数相乘,原式计算正确;B、同底数幂的乘法,底数不变,指数相加,原式=,故错误;C、不是同类项,无法进行加法计算;D、积的乘方等于乘方的积,原式=,计算错误;故选A.点睛:本题主要考查的是幂的乘方、同底数幂的乘法、积的乘方计算法则,属于基础题型.理解各种计算法则是解题的关键.7、B【解析】试题分析:A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误.故选B.【考点】中心对称图形.8、D【解析】

根据展开图中四个面上的图案结合各选项能够看见的面上的图案进行分析判断即可.【详解】A.因为A选项中的几何体展开后,阴影正方形的顶点不在阴影三角形的边上,与展开图不一致,故不可能是A:B.因为B选项中的几何体展开后,阴影正方形的顶点不在阴影三角形的边上,与展开图不一致,故不可能是B;C.因为C选项中的几何体能够看见的三个面上都没有阴影图家,而展开图中有四个面上有阴影图室,所以不可能是C.D.因为D选项中的几何体展开后有可能得到如图所示的展开图,所以可能是D;故选D.【点睛】本题考查了学生的空间想象能力,解决本题的关键突破口是掌握正方体的展开图特征.9、A【解析】连接BD,交AC于O,∵正方形ABCD,∴OD=OB,AC⊥BD,∴D和B关于AC对称,则BE交于AC的点是P点,此时PD+PE最小,∵在AC上取任何一点(如Q点),QD+QE都大于PD+PE(BE),∴此时PD+PE最小,此时PD+PE=BE,∵正方形的面积是12,等边三角形ABE,∴BE=AB=,即最小值是2,故选A.【点睛】本题考查了正方形的性质,等边三角形的性质,轴对称-最短路线问题等知识点的应用,关键是找出PD+PE最小时P点的位置.10、D【解析】

先求出AB的长,再求出AC的长,由B、C到A的距离及圆半径的长的关系判断B、C与圆的关系.【详解】由题意可求出∠A=30°,AB=2BC=4,由勾股定理得AC==2,AB=4>3,AC=2>3,点B、点C都在⊙A外.故答案选D.【点睛】本题考查的知识点是点与圆的位置关系,解题的关键是熟练的掌握点与圆的位置关系.二、填空题(共7小题,每小题3分,满分21分)11、3【解析】

由一元二次方程ax2+bx+c=0有实数根,可得y=ax2+bx(a≠0)和y=-c有交点,由此即可解答.【详解】∵一元二次方程ax2+bx+c=0有实数根,∴抛物线y=ax2+bx(a≠0)和直线y=-c有交点,∴-c≥-3,即c≤3,∴c的最大值为3.故答案为:3.【点睛】本题考查了一元二次方程与二次函数,根据一元二次方程有实数根得到抛物线y=ax2+bx(a≠0)和直线y=-c有交点是解决问题的关键.12、1【解析】

根据题意找到等量关系x2﹣6x+b=(x+a)2﹣5,根据系数相等求出a,b,即可解题.【详解】解:由题可知x2﹣6x+b=(x+a)2﹣5,整理得:x2﹣6x+b=x2+2ax+a2-5,即-6=2a,b=a2-5,解得:a=-3,b=4,∴a+b=1.【点睛】本题考查了配方法的实际应用,属于简单题,找到等量关系求出a,b是解题关键.13、2【解析】

如图,过A点作AE⊥y轴,垂足为E,∵点A在双曲线上,∴四边形AEOD的面积为1∵点B在双曲线上,且AB∥x轴,∴四边形BEOC的面积为3∴四边形ABCD为矩形,则它的面积为3-1=214、-1.【解析】解:∵-3<-2,∴(-3)*(-2)=(-3)-(-2)=-1.故答案为-1.15、-3【解析】设A(a,a+4),B(c,c+4),则解得:x+4=,即x2+4x−k=0,∵直线y=x+4与双曲线y=相交于A、B两点,∴a+c=−4,ac=-k,∴(c−a)2=(c+a)2−4ac=16+4k,∵AB=,∴由勾股定理得:(c−a)2+[c+4−(a+4)]2=()2,2(c−a)2=8,(c−a)2=4,∴16+4k=4,解得:k=−3,故答案为−3.点睛:本题考查了一次函数与反比例函数的交点问题、根与系数的关系、勾股定理、图象上点的坐标特征等,题目具有一定的代表性,综合性强,有一定难度.16、﹣ab(a﹣b)2【解析】

首先确定公因式为ab,然后提取公因式整理即可.【详解】2b2a2﹣a3b﹣ab3=ab(2ab-a2-b2)=﹣ab(a﹣b)2,所以答案为﹣ab(a﹣b)2.【点睛】本题考查了因式分解-提公因式法,解题的关键是掌握提公因式法的概念.17、①②④【解析】

由当▱ABCD的面积最大时,AB⊥BC,可判定▱ABCD是矩形,由矩形的性质,可得②④正确,③错误,又由勾股定理求得AC=1.【详解】∵当▱ABCD的面积最大时,AB⊥BC,∴▱ABCD是矩形,

∴∠A=∠C=90°,AC=BD,故③错误,④正确;∴∠A+∠C=180°;故②正确;∴AC=AB故答案为:①②④.【点睛】此题考查了平行四边形的性质、矩形的判定与性质以及勾股定理.注意证得▱ABCD是矩形是解此题的关键.三、解答题(共7小题,满分69分)18、(1)A种文具进货40只,B种文具进货60只;(2)一共有三种购货方案,购买A型文具48只,购买B型文具52只使销售文具所获利润最大.【解析】

(1)设可以购进A种型号的文具x只,则可以购进B种型号的文具只,根据总价=单价×数量结合A、B两种文具的进价及总价,即可得出关于x的一元一次方程,解之即可得出结论;(2)根据题意列不等式,解之即可得出x的取值范围,再根据一次函数的性质,即可解决最值问题.【详解】(1)设A种文具进货x只,B种文具进货只,由题意得:,解得:x=40,,答:A种文具进货40只,B种文具进货60只;(2)设购进A型文具a只,则有,且;解得:,∵a为整数,∴a=48、49、50,一共有三种购货方案;利润,∵,w随a增大而减小,当a=48时W最大,即购买A型文具48只,购买B型文具52只使销售文具所获利润最大.【点睛】本题主要考查了一次函数的实际问题,熟练掌握一次函数表达式的确定以及自变量取值范围的确定,最值的求解方法是解决本题的关键.19、(1)见解析;(2)成立;(3)【解析】

(1)根据圆周角定理求出∠ACB=90°,求出∠ADC=90°,再根据三角形内角和定理求出即可;(2)根据圆周角定理求出∠BOC=2∠A,求出∠OBC=90°-∠A和∠ACD=90°-∠A即可;(3)分别延长AE、CD交⊙O于H、K,连接HK、CH、AK,在AD上取DG=BD,延长CG交AK于M,延长KO交⊙O于N,连接CN、AN,求出关于a的方程,再求出a即可.【详解】(1)证明:∵AB为直径,∴,∵于D,∴,∴,,∴;(2)成立,证明:连接OC,由圆周角定理得:,∵,∴,∵,∴,∴;(3)分别延长AE、CD交⊙O于H、K,连接HK、CH、AK,∵,,∴,∴,,∵,∴,∵根据圆周角定理得:,∴,∴由三角形内角和定理得:,∴,∴,同理,∵,∴,在AD上取,延长CG交AK于M,则,,∴,∴,延长KO交⊙O于N,连接CN、AN,则,∴,∵,∴,∴四边形CGAN是平行四边形,∴,作于T,则T为CK的中点,∵O为KN的中点,∴,∵,,∴由勾股定理得:,∴,作直径HS,连接KS,∵,,∴由勾股定理得:,∴,∴,设,,∴,,∵,∴,解得:,∴,∴.【点睛】本题考查了垂径定理、解直角三角形、等腰三角形的性质、圆周角定理、勾股定理等知识点,能综合运用知识点进行推理是解此题的关键,综合性比较强,难度偏大.20、(1)y=﹣x1﹣1x+6;(1)<y<;(3)(0,4).【解析】

(1)利用对称轴公式求出m的值,即可确定出解析式;(1)根据x的范围,利用二次函数的增减性确定出y的范围即可;(3)根据题意确定出D与A坐标,进而求出直线AD解析式,设出E坐标,利用对称性确定出E坐标即可.【详解】(1)∵抛物线对称轴为直线x=﹣1,∴﹣=﹣1,即m=﹣1,则二次函数解析式为y=﹣x1﹣1x+6;(1)当x=﹣时,y=;当x=1时,y=.∵﹣<x<1位于对称轴右侧,y随x的增大而减小,∴<y<;(3)当x=﹣1时,y=8,∴顶点D的坐标是(﹣1,8),令y=0,得到:﹣x1﹣1x+6=0,解得:x=﹣6或x=1.∵点A在点B的左侧,∴点A坐标为(﹣6,0).设直线AD解析式为y=kx+b,可得:,解得:,即直线AD解析式为y=1x+11.设E(0,n),则有E′(﹣4,n),代入y=1x+11中得:n=4,则点E坐标为(0,4).【点睛】本题考查了抛物线与x轴的交点,以及二次函数的性质,熟练掌握二次函数的性质是解答本题的关键.21、-1.【解析】

直接利用负指数幂的性质以及算术平方根的性质分别化简得出答案.【详解】原式=﹣1+1﹣3=﹣1.【点睛】本题主要考查了实数运算,正确化简各数是解题的关键.22、(1)k=2;(2)点D经过的路径长为.【解析】

(1)根据题意求得点B的坐标,再代入求得k值即可;(2)设平移后与反比例函数图象的交点为D′,由平移性质可知DD′∥OB,过D′作D′E⊥x轴于点E,交DC于点F,设CD交y轴于点M(如图),根据已知条件可求得点D的坐标为(﹣1,1),设D′横坐标为t,则OE=MF=t,即可得D′(t,t+2),由此可得t(t+2)=2,解方程求得t值,利用勾股定理求得DD′的长,即可得点D经过的路径长.【详解】(1)∵△AOB和△COD为全等三的等腰直角三角形,OC=,∴AB=OA=OC=OD=,∴点B坐标为(,),代入得k=2;(2)设平移后与反比例函数图象的交点为D′,由平移性质可知DD′∥OB,过D′作D′E⊥x轴于点E,交DC于点F,设CD交y轴于点M,如图,∵OC=OD=,∠AOB=∠COM=45°,∴OM=MC=MD=1,∴D坐标为(﹣1,1),设D′横坐标为t,则OE=MF=t,∴D′F=DF=t+1,∴D′E=D′F+EF=t+2,∴D′(t,t+2),∵D′在反比例函数图象上,∴t(t+2)=2,解得t=或t=﹣﹣1(舍去),∴D′(﹣1,+1),∴DD′=,即点D经过的路径长为.【点睛】本题是反比例函数与几何的综合题,求得点D

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论