河北省邢台市临西一中学普通班重点名校2024届中考试题猜想数学试卷含解析_第1页
河北省邢台市临西一中学普通班重点名校2024届中考试题猜想数学试卷含解析_第2页
河北省邢台市临西一中学普通班重点名校2024届中考试题猜想数学试卷含解析_第3页
河北省邢台市临西一中学普通班重点名校2024届中考试题猜想数学试卷含解析_第4页
河北省邢台市临西一中学普通班重点名校2024届中考试题猜想数学试卷含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北省邢台市临西一中学普通班重点名校2024届中考试题猜想数学试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(共10小题,每小题3分,共30分)1.把四张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为宽为)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.则图②中两块阴影部分周长和是()A. B. C. D.2.“龟兔赛跑”是同学们熟悉的寓言故事.如图所示,表示了寓言中的龟、兔的路程S和时间t的关系(其中直线段表示乌龟,折线段表示兔子).下列叙述正确的是()A.赛跑中,兔子共休息了50分钟B.乌龟在这次比赛中的平均速度是0.1米/分钟C.兔子比乌龟早到达终点10分钟D.乌龟追上兔子用了20分钟3.在代数式中,m的取值范围是()A.m≤3 B.m≠0 C.m≥3 D.m≤3且m≠04.在中国集邮总公司设计的2017年纪特邮票首日纪念截图案中,可以看作中心对称图形的是()A.千里江山图B.京津冀协同发展C.内蒙古自治区成立七十周年D.河北雄安新区建立纪念5.1cm2的电子屏上约有细菌135000个,135000用科学记数法表示为()A.0.135×106 B.1.35×105 C.13.5×104 D.135×1036.如图,二次函数y=ax2+bx+c(a≠0)的图象的顶点在第一象限,且过点(0,1)和(﹣1,0).下列结论:①ab<0,②b2>4a,③0<a+b+c<2,④0<b<1,⑤当x>﹣1时,y>0,其中正确结论的个数是A.5个 B.4个 C.3个 D.2个7.如图,矩形ABCD的边长AD=3,AB=2,E为AB的中点,F在边BC上,且BF=2FC,AF分别与DE、DB相交于点M,N,则MN的长为()A. B. C. D.8.将抛物线y=x2﹣x+1先向左平移2个单位长度,再向上平移3个单位长度,则所得抛物线的表达式为()A.y=x2+3x+6 B.y=x2+3x C.y=x2﹣5x+10 D.y=x2﹣5x+49.如图,CE,BF分别是△ABC的高线,连接EF,EF=6,BC=10,D、G分别是EF、BC的中点,则DG的长为()A.6 B.5 C.4 D.310.我们从不同的方向观察同一物体时,可能看到不同的图形,则从正面、左面、上面观察都不可能看到矩形的是()A. B. C. D.二、填空题(本大题共6个小题,每小题3分,共18分)11.一元二次方程x2﹣4=0的解是._________12.若a+b=5,ab=3,则a2+b2=_____.13.如图,在△ABC中,CA=CB,∠ACB=90°,AB=2,点D为AB的中点,以点D为圆心作圆心角为90°的扇形DEF,点C恰在弧EF上,则图中阴影部分的面积为__________.14.已知反比例函数,在其图象所在的每个象限内,的值随的值增大而减小,那么它的图象所在的象限是第__________象限.15.已知∠=32°,则∠的余角是_____°.16.计算:()•=__.三、解答题(共8题,共72分)17.(8分)已知:如图,在菱形中,点,,分别为,,的中点,连接,,,.求证:;当与满足什么关系时,四边形是正方形?请说明理由.18.(8分)如图,某大楼的顶部竖有一块广告牌CD,小李在山坡的坡脚A处测得广告牌底部D的仰角为60°沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知山坡AB的倾斜角∠BAH=30°,AB=20米,AB=30米.(1)求点B距水平面AE的高度BH;(2)求广告牌CD的高度.19.(8分)三辆汽车经过某收费站下高速时,在2个收费通道A,B中,可随机选择其中的一个通过.(1)三辆汽车经过此收费站时,都选择A通道通过的概率是;(2)求三辆汽车经过此收费站时,至少有两辆汽车选择B通道通过的概率.20.(8分)在平面直角坐标系中,已知抛物线经过A(﹣4,0),B(0,﹣4),C(2,0)三点.(1)求抛物线解析式;(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△MOA的面积为S.求S关于m的函数关系式,并求出当m为何值时,S有最大值,这个最大值是多少?(3)若点Q是直线y=﹣x上的动点,过Q做y轴的平行线交抛物线于点P,判断有几个Q能使以点P,Q,B,O为顶点的四边形是平行四边形的点,直接写出相应的点Q的坐标.21.(8分)如图,抛物线y=ax2+bx+c与x轴的交点分别为A(﹣6,0)和点B(4,0),与y轴的交点为C(0,3).(1)求抛物线的解析式;(2)点P是线段OA上一动点(不与点A重合),过P作平行于y轴的直线与AC交于点Q,点D、M在线段AB上,点N在线段AC上.①是否同时存在点D和点P,使得△APQ和△CDO全等,若存在,求点D的坐标,若不存在,请说明理由;②若∠DCB=∠CDB,CD是MN的垂直平分线,求点M的坐标.22.(10分)问题提出(1)如图①,在矩形ABCD中,AB=2AD,E为CD的中点,则∠AEB∠ACB(填“>”“<”“=”);问题探究(2)如图②,在正方形ABCD中,P为CD边上的一个动点,当点P位于何处时,∠APB最大?并说明理由;问题解决(3)如图③,在一幢大楼AD上装有一块矩形广告牌,其侧面上、下边沿相距6米(即AB=6米),下边沿到地面的距离BD=11.6米.如果小刚的睛睛距离地面的高度EF为1.6米,他从远处正对广告牌走近时,在P处看广告效果最好(视角最大),请你在图③中找到点P的位置,并计算此时小刚与大楼AD之间的距离.23.(12分)汤姆斯杯世界男子羽毛球团体赛小组赛比赛规则:两队之间进行五局比赛,其中三局单打,两局双打,五局比赛必须全部打完,赢得三局及以上的队获胜.假如甲,乙两队每局获胜的机会相同.(1)若前四局双方战成2:2,那么甲队最终获胜的概率是__________;(2)现甲队在前两局比赛中已取得2:0的领先,那么甲队最终获胜的概率是多少?24.已知关于x,y的二元一次方程组的解为,求a、b的值.

参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】

根据题意列出关系式,去括号合并即可得到结果.【详解】解:设小长方形卡片的长为x,宽为y,根据题意得:x+2y=a,则图②中两块阴影部分周长和是:2a+2(b-2y)+2(b-x)=2a+4b-4y-2x=2a+4b-2(x+2y)=2a+4b-2a=4b.故选择:D.【点睛】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.2、D【解析】分析:根据图象得出相关信息,并对各选项一一进行判断即可.详解:由图象可知,在赛跑中,兔子共休息了:50-10=40(分钟),故A选项错误;乌龟跑500米用了50分钟,平均速度为:(米/分钟),故B选项错误;兔子是用60分钟到达终点,乌龟是用50分钟到达终点,兔子比乌龟晚到达终点10分钟,故C选项错误;在比赛20分钟时,乌龟和兔子都距起点200米,即乌龟追上兔子用了20分钟,故D选项正确.故选D.点睛:本题考查了从图象中获取信息的能力.正确识别图象、获取信息并进行判断是解题的关键.3、D【解析】

根据二次根式有意义的条件即可求出答案.【详解】由题意可知:解得:m≤3且m≠0故选D.【点睛】本题考查二次根式有意义的条件,解题的关键是熟练运用二次根式有意义的条件,本题属于基础题型.4、C【解析】

根据中心对称图形的概念求解.【详解】解:A选项是轴对称图形,不是中心对称图形,故本选项错误;B选项不是中心对称图形,故本选项错误;C选项为中心对称图形,故本选项正确;D选项不是中心对称图形,故本选项错误.故选C.【点睛】本题主要考查了中心对称图形的概念:关键是找到相关图形的对称中心,旋转180度后与原图重合.5、B【解析】

根据科学记数法的表示形式(a×10n的形式,其中1≤|a|<10,n为整数,确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同;当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数).【详解】解:135000用科学记数法表示为:1.35×1.故选B.【点睛】科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6、B【解析】

解:∵二次函数y=ax3+bx+c(a≠3)过点(3,3)和(﹣3,3),∴c=3,a﹣b+c=3.①∵抛物线的对称轴在y轴右侧,∴,x>3.∴a与b异号.∴ab<3,正确.②∵抛物线与x轴有两个不同的交点,∴b3﹣4ac>3.∵c=3,∴b3﹣4a>3,即b3>4a.正确.④∵抛物线开口向下,∴a<3.∵ab<3,∴b>3.∵a﹣b+c=3,c=3,∴a=b﹣3.∴b﹣3<3,即b<3.∴3<b<3,正确.③∵a﹣b+c=3,∴a+c=b.∴a+b+c=3b>3.∵b<3,c=3,a<3,∴a+b+c=a+b+3<a+3+3=a+3<3+3=3.∴3<a+b+c<3,正确.⑤抛物线y=ax3+bx+c与x轴的一个交点为(﹣3,3),设另一个交点为(x3,3),则x3>3,由图可知,当﹣3<x<x3时,y>3;当x>x3时,y<3.∴当x>﹣3时,y>3的结论错误.综上所述,正确的结论有①②③④.故选B.7、B【解析】

过F作FH⊥AD于H,交ED于O,于是得到FH=AB=1,根据勾股定理得到AF===,根据平行线分线段成比例定理得到,OH=AE=,由相似三角形的性质得到=,求得AM=AF=,根据相似三角形的性质得到=,求得AN=AF=,即可得到结论.【详解】过F作FH⊥AD于H,交ED于O,则FH=AB=1.∵BF=1FC,BC=AD=3,∴BF=AH=1,FC=HD=1,∴AF===,∵OH∥AE,∴=,∴OH=AE=,∴OF=FH﹣OH=1﹣=,∵AE∥FO,∴△AME∽△FMO,∴=,∴AM=AF=,∵AD∥BF,∴△AND∽△FNB,∴=,∴AN=AF=,∴MN=AN﹣AM=﹣=,故选B.【点睛】构造相似三角形是本题的关键,且求长度问题一般需用到勾股定理来解决,常作垂线8、A【解析】

先将抛物线解析式化为顶点式,左加右减的原则即可.【详解】y=x当向左平移2个单位长度,再向上平移3个单位长度,得y=x-故选A.【点睛】本题考查二次函数的平移;掌握平移的法则“左加右减”,二次函数的平移一定要将解析式化为顶点式进行;9、C【解析】

连接EG、FG,根据斜边中线长为斜边一半的性质即可求得EG=FG=BC,因为D是EF中点,根据等腰三角形三线合一的性质可得GD⊥EF,再根据勾股定理即可得出答案.【详解】解:连接EG、FG,EG、FG分别为直角△BCE、直角△BCF的斜边中线,∵直角三角形斜边中线长等于斜边长的一半∴EG=FG=BC=×10=5,∵D为EF中点∴GD⊥EF,即∠EDG=90°,又∵D是EF的中点,∴,在中,,故选C.【点睛】本题考查了直角三角形中斜边上中线等于斜边的一半的性质、勾股定理以及等腰三角形三线合一的性质,本题中根据等腰三角形三线合一的性质求得GD⊥EF是解题的关键.10、C【解析】

主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.依此找到从正面、左面、上面观察都不可能看到矩形的图形.【详解】A、主视图为长方形,左视图为长方形,俯视图为圆,故本选项错误;B、主视图为长方形,左视图为长方形,俯视图为长方形,故本选项错误;C、主视图为等腰梯形,左视图为等腰梯形,俯视图为圆环,从正面、左面、上面观察都不可能看到长方形,故本选项正确;D、主视图为三角形,左视图为三角形,俯视图为有对角线的矩形,故本选项错误.故选C.【点睛】本题重点考查了三视图的定义考查学生的空间想象能力,关键是根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形解答.二、填空题(本大题共6个小题,每小题3分,共18分)11、x=±1【解析】移项得x1=4,∴x=±1.故答案是:x=±1.12、1【解析】试题分析:首先把等式a+b=5的等号两边分别平方,即得a2+2ab+b2=25,然后根据题意即可得解.解:∵a+b=5,∴a2+2ab+b2=25,∵ab=3,∴a2+b2=1.故答案为1.考点:完全平方公式.13、.【解析】

连接CD,根据题意可得△DCE≌△BDF,阴影部分的面积等于扇形的面积减去△BCD的面积.【详解】解:连接CD,

作DM⊥BC,DN⊥AC.

∵CA=CB,∠ACB=90°,点D为AB的中点,

∴DC=AB=1,四边形DMCN是正方形,DM=.

则扇形FDE的面积是:.

∵CA=CB,∠ACB=90°,点D为AB的中点,

∴CD平分∠BCA,

又∵DM⊥BC,DN⊥AC,

∴DM=DN,

∵∠GDH=∠MDN=90°,

∴∠GDM=∠HDN,

则在△DMG和△DNH中,,

∴△DMG≌△DNH(AAS),

∴S四边形DGCH=S四边形DMCN=.

则阴影部分的面积是:.故答案为:.【点睛】本题考查了三角形的全等的判定与扇形的面积的计算的综合题,正确证明△DMG≌△DNH,得到S四边形DGCH=S四边形DMCN是关键.14、【解析】

直接利用反比例函数的增减性进而得出图象的分布.【详解】∵反比例函数y(k≠0),在其图象所在的每个象限内,y的值随x的值增大而减小,∴它的图象所在的象限是第一、三象限.故答案为:一、三.【点睛】本题考查了反比例的性质,正确掌握反比例函数图象的分布规律是解题的关键.15、58°【解析】

根据余角:如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角可得答案.【详解】解:∠α的余角是:90°-32°=58°.故答案为58°.【点睛】本题考查余角,解题关键是掌握互为余角的两个角的和为90度.16、1【解析】试题分析:首先进行通分,然后再进行因式分解,从而进行约分得出答案.原式=.三、解答题(共8题,共72分)17、见解析【解析】

(1)由菱形的性质得出∠B=∠D,AB=BC=DC=AD,由已知和三角形中位线定理证出AE=BE=DF=AF,OF=DC,OE=BC,OE∥BC,由(SAS)证明△BCE≌△DCF即可;

(2)由(1)得:AE=OE=OF=AF,证出四边形AEOF是菱形,再证出∠AEO=90°,四边形AEOF是正方形.【详解】(1)证明:∵四边形ABCD是菱形,∴∠B=∠D,AB=BC=DC=AD,∵点E,O,F分别为AB,AC,AD的中点,∴AE=BE=DF=AF,OF=DC,OE=BC,OE∥BC,在△BCE和△DCF中,,∴△BCE≌△DCF(SAS);(2)当AB⊥BC时,四边形AEOF是正方形,理由如下:由(1)得:AE=OE=OF=AF,∴四边形AEOF是菱形,∵AB⊥BC,OE∥BC,∴OE⊥AB,∴∠AEO=90°,∴四边形AEOF是正方形.【点睛】本题考查了全等三角形、菱形、正方形的性质,解题的关键是熟练的掌握菱形、正方形、全等三角形的性质.18、(1)BH为10米;(2)宣传牌CD高约(40﹣20)米【解析】

(1)过B作DE的垂线,设垂足为G.分别在Rt△ABH中,通过解直角三角形求出BH、AH;

(2)在△ADE解直角三角形求出DE的长,进而可求出EH即BG的长,在Rt△CBG中,∠CBG=45°,则CG=BG,由此可求出CG的长然后根据CD=CG+GE-DE即可求出宣传牌的高度.【详解】(1)过B作BH⊥AE于H,Rt△ABH中,∠BAH=30°,∴BH=AB=×20=10(米),即点B距水平面AE的高度BH为10米;(2)过B作BG⊥DE于G,∵BH⊥HE,GE⊥HE,BG⊥DE,∴四边形BHEG是矩形.∵由(1)得:BH=10,AH=10,∴BG=AH+AE=(10+30)米,Rt△BGC中,∠CBG=45°,∴CG=BG=(10+30)米,∴CE=CG+GE=CG+BH=10+30+10=10+40(米),在Rt△AED中,=tan∠DAE=tan60°=,DE=AE=30∴CD=CE﹣DE=10+40﹣30=40﹣20.答:宣传牌CD高约(40﹣20)米.【点睛】本题考查解直角三角形的应用-仰角俯角问题和解直角三角形的应用-坡度坡角问题,解题的关键是掌握解直角三角形的应用-仰角俯角问题和解直角三角形的应用-坡度坡角问题的基本方法.19、(1);(2)【解析】

(1)用树状图分3次实验列举出所有情况,再看3辆车都选择A通道通过的情况数占总情况数的多少即可;

(2)由(1)可知所有可能的结果数目,再看至少有两辆汽车选择B通道通过的情况数占总情况数的多少即可.【详解】解:(1)画树状图得:共8种情况,甲、乙、丙三辆车都选择A通道通过的情况数有1种,所以都选择A通道通过的概率为,故答案为:;(2)∵共有8种等可能的情况,其中至少有两辆汽车选择B通道通过的有4种情况,∴至少有两辆汽车选择B通道通过的概率为.【点睛】考查了概率的求法;用到的知识点为:概率=所求情况数与总情况数之比;得到所求的情况数是解决本题的关键.20、(1)y=x2+x﹣4;(2)S关于m的函数关系式为S=﹣m2﹣2m+8,当m=﹣1时,S有最大值9;(3)Q坐标为(﹣4,4)或(﹣2+2,2﹣2)或(﹣2﹣2,2+2)时,使点P,Q,B,O为顶点的四边形是平行四边形.【解析】

(1)设抛物线解析式为y=ax2+bx+c,然后把点A、B、C的坐标代入函数解析式,利用待定系数法求解即可;(2)利用抛物线的解析式表示出点M的纵坐标,从而得到点M到x轴的距离,然后根据三角形面积公式表示并整理即可得解,根据抛物线的性质求出第三象限内二次函数的最值,然后即可得解;(3)利用直线与抛物线的解析式表示出点P、Q的坐标,然后求出PQ的长度,再根据平行四边形的对边相等列出算式,然后解关于x的一元二次方程即可得解.【详解】解:(1)设抛物线解析式为y=ax2+bx+c,∵抛物线经过A(﹣4,0),B(0,﹣4),C(2,0),∴,解得,∴抛物线解析式为y=x2+x﹣4;(2)∵点M的横坐标为m,∴点M的纵坐标为m2+m﹣4,又∵A(﹣4,0),∴AO=0﹣(﹣4)=4,∴S=×4×|m2+m﹣4|=﹣(m2+2m﹣8)=﹣m2﹣2m+8,∵S=﹣(m2+2m﹣8)=﹣(m+1)2+9,点M为第三象限内抛物线上一动点,∴当m=﹣1时,S有最大值,最大值为S=9;故答案为S关于m的函数关系式为S=﹣m2﹣2m+8,当m=﹣1时,S有最大值9;(3)∵点Q是直线y=﹣x上的动点,∴设点Q的坐标为(a,﹣a),∵点P在抛物线上,且PQ∥y轴,∴点P的坐标为(a,a2+a﹣4),∴PQ=﹣a﹣(a2+a﹣4)=﹣a2﹣2a+4,又∵OB=0﹣(﹣4)=4,以点P,Q,B,O为顶点的四边形是平行四边形,∴|PQ|=OB,即|﹣a2﹣2a+4|=4,①﹣a2﹣2a+4=4时,整理得,a2+4a=0,解得a=0(舍去)或a=﹣4,﹣a=4,所以点Q坐标为(﹣4,4),②﹣a2﹣2a+4=﹣4时,整理得,a2+4a﹣16=0,解得a=﹣2±2,所以点Q的坐标为(﹣2+2,2﹣2)或(﹣2﹣2,2+2),综上所述,Q坐标为(﹣4,4)或(﹣2+2,2﹣2)或(﹣2﹣2,2+2)时,使点P,Q,B,O为顶点的四边形是平行四边形.【点睛】本题是对二次函数的综合考查有待定系数法求二次函数解析式,三角形的面积,二次函数的最值问题,平行四边形的对边相等的性质,平面直角坐标系中两点间的距离的表示,综合性较强,但难度不大,仔细分析便不难求解.21、(1)y=﹣x2﹣x+3;(2)①点D坐标为(﹣,0);②点M(,0).【解析】

(1)应用待定系数法问题可解;(2)①通过分类讨论研究△APQ和△CDO全等②由已知求点D坐标,证明DN∥BC,从而得到DN为中线,问题可解.【详解】(1)将点(-6,0),C(0,3),B(4,0)代入y=ax2+bx+c,得,解得:,∴抛物线解析式为:y=-x2-x+3;(2)①存在点D,使得△APQ和△CDO全等,当D在线段OA上,∠QAP=∠DCO,AP=OC=3时,△APQ和△CDO全等,∴tan∠QAP=tan∠DCO,,∴,∴OD=,∴点D坐标为(-,0).由对称性,当点D坐标为(,0)时,由点B坐标为(4,0),此时点D(,0)在线段OB上满足条件.②∵OC=3,OB=4,∴BC=5,∵∠DCB=∠CDB,∴BD=BC=5,∴OD=BD-OB=1,则点D坐标为(-1,0)且AD=BD=5,连DN,CM,则DN=DM,∠NDC=∠MDC,∴∠NDC=∠DCB,∴DN∥BC,∴,则点N为AC中点.∴DN时△ABC的中位线,∵DN=DM=BC=,∴OM=DM-OD=∴点M(,0)【点睛】本题是二次函数综合题,考查了二次函数待定系数法、三角形全等的判定、锐角三角形函数的相关知识.解答时,注意数形结合.22、(1)>;(2)当点P位于CD的中点时,∠APB最大,理由见解析;(3)4米.【解析】

(1)过点E作EF⊥AB于点F,由矩形的性质和等腰三角形的判定得到:△AEF是等腰直角三角形,易证∠AEB=90°,而∠ACB<90°,由此可以比较∠AEB与∠ACB的大小(2)假设P为CD的中点,作△APB的外接圆⊙O,则此时CD切⊙O于P,在CD上取任意异于P点的点E,连接AE,与⊙O交于点F,连接BE、BF;由∠AFB是△EFB的外角,得∠AFB>∠AEB,且∠AFB与∠APB均为⊙O中弧AB所对的角,则∠AFB=∠APB,即可判断∠APB与∠AEB的大小关系,即可得点P位于何处时,∠APB最大;(3)过点E作CE∥DF,交AD于点C,作AB的垂直平分线,垂足为点Q,并在垂直平分线上取点O,使OA=CQ,以点O为圆心,OB为半径作圆,则⊙O切CE于点G,连接OG,并延长交DF于点P,连接OA,再利用勾股定理以及长度关系即可得解.【详解】解:(1)∠AEB>∠ACB,理由如下:如图1,过点E作EF⊥AB于点F,∵在矩形ABCD中,AB=2AD,E为CD中点,∴四边形AD

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论