贵州铜仁松桃县2024届中考数学对点突破模拟试卷含解析_第1页
贵州铜仁松桃县2024届中考数学对点突破模拟试卷含解析_第2页
贵州铜仁松桃县2024届中考数学对点突破模拟试卷含解析_第3页
贵州铜仁松桃县2024届中考数学对点突破模拟试卷含解析_第4页
贵州铜仁松桃县2024届中考数学对点突破模拟试卷含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

贵州铜仁松桃县2024届中考数学对点突破模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.下列命题是真命题的是()A.如果a+b=0,那么a=b=0 B.的平方根是±4C.有公共顶点的两个角是对顶角 D.等腰三角形两底角相等2.根据北京市统计局发布的统计数据显示,北京市近五年国民生产总值数据如图1所示,2017年国民生产总值中第一产业、第二产业、第三产业所占比例如图2所示,根据以上信息,下列判断错误的是()A.2013年至2017年北京市国民生产总值逐年增加B.2017年第二产业生产总值为5320亿元C.2017年比2016年的国民生产总值增加了10%D.若从2018年开始,每一年的国民生产总值比前一年均增长10%,到2019年的国民生产总值将达到33880亿元3.如图,AB是⊙O的直径,C,D是⊙O上位于AB异侧的两点.下列四个角中,一定与∠ACD互余的角是()A.∠ADC B.∠ABD C.∠BAC D.∠BAD4.“五一”期间,某市共接待海内外游客约567000人次,将567000用科学记数法表示为()A.567×103B.56.7×104C.5.67×105D.0.567×1065.自1993年起,联合国将每年的3月11日定为“世界水日”,宗旨是唤起公众的节水意识,加强水资源保护.某校在开展“节约每一滴水”的活动中,从初三年级随机选出10名学生统计出各自家庭一个月的节约用水量,有关数据整理如下表.节约用水量(单位:吨)11.11.411.5家庭数46531这组数据的中位数和众数分别是()A.1.1,1.1; B.1.4,1.1; C.1.3,1.4; D.1.3,1.1.6.如图,直线l是一次函数y=kx+b的图象,若点A(3,m)在直线l上,则m的值是()A.﹣5 B. C. D.77.已知抛物线y=x2+bx+c的对称轴为x=2,若关于x的一元二次方程﹣x2﹣bx﹣c=0在﹣1<x<3的范围内有两个相等的实数根,则c的取值范围是(

)A.c=4B.﹣5<c≤4C.﹣5<c<3或c=4D.﹣5<c≤3或c=48.下面的几何体中,主视图为圆的是()A. B. C. D.9.-4的绝对值是()A.4 B. C.-4 D.10.如图,数轴上有A,B,C,D四个点,其中表示互为倒数的点是()A.点A与点B B.点A与点D C.点B与点D D.点B与点C二、填空题(共7小题,每小题3分,满分21分)11.如图,将三角形AOC绕点O顺时针旋转120°得三角形BOD,已知OA=4,OC=1,那么图中阴影部分的面积为_____.(结果保留π)12.如图,在Rt△ABC中,AC=4,BC=3,将Rt△ABC以点A为中心,逆时针旋转60°得到△ADE,则线段BE的长度为_____.13.已知且,则=__________.14.地球上的海洋面积约为361000000km1,则科学记数法可表示为_______km1.15.如图,在四边形ABCD中,AB=AD,∠BAD=∠BCD=90°,连接AC、BD,若S四边形ABCD=18,则BD的最小值为_________.16.若将抛物线y=﹣4(x+2)2﹣3图象向左平移5个单位,再向上平移3个单位得到的抛物线的顶点坐标是_____.17.甲乙两地9月上旬的日平均气温如图所示,则甲乙两地这10天日平均气温方差大小关系为________.(填“>”或“<”)三、解答题(共7小题,满分69分)18.(10分)如图,△ABC中,∠A=90°,AB=AC=4,D是BC边上一点,将点D绕点A逆时针旋转60°得到点E,连接CE.(1)当点E在BC边上时,画出图形并求出∠BAD的度数;(2)当△CDE为等腰三角形时,求∠BAD的度数;(3)在点D的运动过程中,求CE的最小值.(参考数值:sin75°=,cos75°=,tan75°=)19.(5分)如图,在△ABC中,∠C=90°,E是BC上一点,ED⊥AB,垂足为D.求证:△ABC∽△EBD.20.(8分)某文教店老板到批发市场选购A、B两种品牌的绘图工具套装,每套A品牌套装进价比B品牌每套套装进价多2.5元,已知用200元购进A种套装的数量是用75元购进B种套装数量的2倍.求A、B两种品牌套装每套进价分别为多少元?若A品牌套装每套售价为13元,B品牌套装每套售价为9.5元,店老板决定,购进B品牌的数量比购进A品牌的数量的2倍还多4套,两种工具套装全部售出后,要使总的获利超过120元,则最少购进A品牌工具套装多少套?21.(10分)小明随机调查了若干市民租用共享单车的骑车时间t(单位:分),将获得的数据分成四组,绘制了如下统计图(A:0<t≤10,B:10<t≤20,C:20<t≤30,D:t>30),根据图中信息,解答下列问题:这项被调查的总人数是多少人?试求表示A组的扇形统计图的圆心角的度数,补全条形统计图;如果小明想从D组的甲、乙、丙、丁四人中随机选择两人了解平时租用共享单车情况,请用列表或画树状图的方法求出恰好选中甲的概率.22.(10分)如图,在△ABC中,AB=AC,点P、D分别是BC、AC边上的点,且∠APD=∠B,求证:AC•CD=CP•BP;若AB=10,BC=12,当PD∥AB时,求BP的长.23.(12分)如图,已知⊙O是以AB为直径的△ABC的外接圆,过点A作⊙O的切线交OC的延长线于点D,交BC的延长线于点E.(1)求证:∠DAC=∠DCE;(2)若AB=2,sin∠D=,求AE的长.24.(14分)A粮仓和B粮仓分别库存粮食12吨和6吨,现决定支援给C市10吨和D市8吨.已知从A粮仓调运一吨粮食到C市和D市的运费分别为400元和800元;从B粮仓调运一吨粮食到C市和D市的运费分别为300元和500元.设B粮仓运往C市粮食x吨,求总运费W(元)关于x的函数关系式.(写出自变量的取值范围)若要求总运费不超过9000元,问共有几种调运方案?求出总运费最低的调运方案,最低运费是多少?

参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】

解:A、如果a+b=0,那么a=b=0,或a=﹣b,错误,为假命题;B、=4的平方根是±2,错误,为假命题;C、有公共顶点且相等的两个角是对顶角,错误,为假命题;D、等腰三角形两底角相等,正确,为真命题;故选D.2、C【解析】

由条形图与扇形图中的数据及增长率的定义逐一判断即可得.【详解】A、由条形图知2013年至2017年北京市国民生产总值逐年增加,此选项正确;B、2017年第二产业生产总值为28000×19%=5320亿元,此选项正确;C、2017年比2016年的国民生产总值增加了,此选项错误;D、若从2018年开始,每一年的国民生产总值比前一年均增长10%,到2019年的国民生产总值将达到2800×(1+10%)2=33880亿元,此选项正确;故选C.【点睛】本题主要考查条形统计图与扇形统计图,解题的关键是根据条形统计图与扇形统计图得出具体数据.3、D【解析】

∵∠ACD对的弧是,对的另一个圆周角是∠ABD,∴∠ABD=∠ACD(同圆中,同弧所对的圆周角相等),又∵AB为直径,∴∠ADB=90°,∴∠ABD+∠BAD=90°,即∠ACD+∠BAD=90°,∴与∠ACD互余的角是∠BAD.故选D.4、C【解析】

科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.【详解】567000=5.67×105,【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5、D【解析】分析:中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.详解:这组数据的中位数是;这组数据的众数是1.1.故选D.点睛:本题属于基础题,考查了确定一组数据的中位数和众数的能力,要明确定义,一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.6、C【解析】

把(-2,0)和(0,1)代入y=kx+b,求出解析式,再将A(3,m)代入,可求得m.【详解】把(-2,0)和(0,1)代入y=kx+b,得,解得所以,一次函数解析式y=x+1,再将A(3,m)代入,得m=×3+1=.故选C.【点睛】本题考核知识点:考查了待定系数法求一次函数的解析式,根据解析式再求函数值.7、D【解析】解:由对称轴x=2可知:b=﹣4,∴抛物线y=x2﹣4x+c,令x=﹣1时,y=c+5,x=3时,y=c﹣3,关于x的一元二次方程﹣x2﹣bx﹣c=0在﹣1<x<3的范围有实数根,当△=0时,即c=4,此时x=2,满足题意.当△>0时,(c+5)(c﹣3)≤0,∴﹣5≤c≤3,当c=﹣5时,此时方程为:﹣x2+4x+5=0,解得:x=﹣1或x=5不满足题意,当c=3时,此时方程为:﹣x2+4x﹣3=0,解得:x=1或x=3此时满足题意,故﹣5<c≤3或c=4,故选D.点睛:本题主要考查二次函数与一元二次方程的关系.理解二次函数与一元二次方程之间的关系是解题的关键.8、C【解析】试题解析:A、的主视图是矩形,故A不符合题意;B、的主视图是正方形,故B不符合题意;C、的主视图是圆,故C符合题意;D、的主视图是三角形,故D不符合题意;故选C.考点:简单几何体的三视图.9、A【解析】

根据绝对值的概念计算即可.(绝对值是指一个数在坐标轴上所对应点到原点的距离叫做这个数的绝对值.)【详解】根据绝对值的概念可得-4的绝对值为4.【点睛】错因分析:容易题.选错的原因是对实数的相关概念没有掌握,与倒数、相反数的概念混淆.10、A【解析】

试题分析:主要考查倒数的定义和数轴,要求熟练掌握.需要注意的是:倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.根据倒数定义可知,-2的倒数是-,有数轴可知A对应的数为-2,B对应的数为-,所以A与B是互为倒数.故选A.考点:1.倒数的定义;2.数轴.二、填空题(共7小题,每小题3分,满分21分)11、5π【解析】

根据旋转的性质可以得到阴影部分的面积=扇形OAB的面积﹣扇形OCD的面积,利用扇形的面积公式计算即可求解.【详解】∵△AOC≌△BOD,∴阴影部分的面积=扇形OAB的面积﹣扇形OCD的面积5π.故答案为:5π.【点睛】本题考查了旋转的性质以及扇形的面积公式,正确理解:阴影部分的面积=扇形OAB的面积﹣扇形OCD的面积是解题的关键.12、【解析】

连接CE,作EF⊥BC于F,根据旋转变换的性质得到∠CAE=60°,AC=AE,根据等边三角形的性质得到CE=AC=4,∠ACE=60°,根据直角三角形的性质、勾股定理计算即可.【详解】解:连接CE,作EF⊥BC于F,

由旋转变换的性质可知,∠CAE=60°,AC=AE,

∴△ACE是等边三角形,

∴CE=AC=4,∠ACE=60°,

∴∠ECF=30°,

∴EF=CE=2,

由勾股定理得,CF==,

∴BF=BC-CF=,

由勾股定理得,BE==,

故答案为:.【点睛】本题考查的是旋转变换的性质、等边三角形的判定和性质,掌握旋转变换对应点到旋转中心的距离相等、对应点与旋转中心所连线段的夹角等于旋转角是解题的关键.13、【解析】分析:根据相似三角形的面积比等于相似比的平方求解即可.详解:∵△ABC∽△A′B′C′,∴S△ABC:S△A′B′C′=AB2:A′B′2=1:2,∴AB:A′B′=1:.点睛:本题的关键是理解相似三角形的面积比等于相似比的平方.14、3.61×2【解析】

科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】将361000000用科学记数法表示为3.61×2.故答案为3.61×2.15、6【解析】

过A作AM⊥CD于M,过A作AN⊥BC于N,先根据“AAS”证明△DAM≌△BAN,再证明四边形AMCN为正方形,可求得AC=6,从而当BD⊥AC时BD最小,且最小值为6.【详解】如下图,过A作AM⊥CD于M,过A作AN⊥BC于N,则∠MAN=90°,∠DAM+∠BAM=90°,∠BAM+∠BAN=90°,∴∠DAM=∠BAN.∵∠DMA=∠N=90°,AB=AD,∴△DAM≌△BAN,∴AM=AN,∴四边形AMCN为正方形,∴S四边形ABCD=S四边形AMCN=AC2,∴AC=6,∴BD⊥AC时BD最小,且最小值为6.故答案为:6.【点睛】本题考查了全等三角形的判定与性质,正方形的判定与性质,正确作出辅助线是解答本题的关键.16、(﹣7,0)【解析】

直接利用平移规律“左加右减,上加下减”得出平移后的解析式进而得出答案.【详解】∵将抛物线y=-4(x+2)2-3图象向左平移5个单位,再向上平移3个单位,∴平移后的解析式为:y=-4(x+7)2,故得到的抛物线的顶点坐标是:(-7,0).故答案为(-7,0).【点睛】此题主要考查了二次函数与几何变换,正确掌握平移规律是解题关键.17、>【解析】

观察平均气温统计图可知:乙地的平均气温比较稳定,波动小;波动越小越稳定.【详解】解:观察平均气温统计图可知:乙地的平均气温比较稳定,波动小;则乙地的日平均气温的方差小,故S2甲>S2乙.故答案为:>.【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定.反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.三、解答题(共7小题,满分69分)18、(1)∠BAD=15°;(2)∠BAC=45°或∠BAD=60°;(3)CE=.【解析】

(1)如图1中,当点E在BC上时.只要证明△BAD≌△CAE,即可推出∠BAD=∠CAE=(90°-60°)=15°;(2)分两种情形求解①如图2中,当BD=DC时,易知AD=CD=DE,此时△DEC是等腰三角形.②如图3中,当CD=CE时,△DEC是等腰三角形;(3)如图4中,当E在BC上时,E记为E′,D记为D′,连接EE′.作CM⊥EE′于M,E′N⊥AC于N,DE交AE′于O.首先确定点E的运动轨迹是直线EE′(过点E与BC成60°角的直线上),可得EC的最小值即为线段CM的长(垂线段最短).【详解】解:(1)如图1中,当点E在BC上时.

∵AD=AE,∠DAE=60°,∴△ADE是等边三角形,∴∠ADE=∠AED=60°,∴∠ADB=∠AEC=120°,∵AB=AC,∠BAC=90°,∴∠B=∠C=45°,在△ABD和△ACE中,∠B=∠C,∠ADB=∠AEC,AB=AC,∴△BAD≌△CAE,∴∠BAD=∠CAE=(90°-60°)=15°.(2)①如图2中,当BD=DC时,易知AD=CD=DE,此时△DEC是等腰三角形,∠BAD=∠BAC=45°.

②如图3中,当CD=CE时,△DEC是等腰三角形.∵AD=AE,∴AC垂直平分线段DE,∴∠ACD=∠ACE=45°,∴∠DCE=90°,∴∠EDC=∠CED=45°,∵∠B=45°,∴∠EDC=∠B,∴DE∥AB,∴∠BAD=∠ADE=60°.

(3)如图4中,当E在BC上时,E记为E′,D记为D′,连接EE′.作CM⊥EE′于M,E′N⊥AC于N,DE交AE′于O.

∵∠AOE=∠DOE′,∠AE′D=∠AEO,∴△AOE∽△DOE′,∴AO:OD=EO:OE',∴AO:EO=OD:OE',∵∠AOD=∠EOE′,∴△AOD∽△EOE′,∴∠EE′O=∠ADO=60°,∴点E的运动轨迹是直线EE′(过点E与BC成60°角的直线上),∴EC的最小值即为线段CM的长(垂线段最短),设E′N=CN=a,则AN=4-a,在Rt△ANE′中,tan75°=AN:NE',∴2+=,∴a=2-,∴CE′=CN=2-.在Rt△CE′M中,CM=CE′•cos30°=,∴CE的最小值为.【点睛】本题考查几何变换综合题、等腰直角三角形的性质、等边三角形的性质、全等三角形的判定和性质、相似三角形的判定和性质、轨迹等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,学会利用垂线段最短解决最值问题,属于中考压轴题.19、证明见解析【解析】试题分析:先根据垂直的定义得出∠EDB=90°,故可得出∠EDB=∠C.再由∠B=∠B,根据有两个角相等的两三角形相似即可得出结论.试题解析:解:∵ED⊥AB,∴∠EDB=90°.∵∠C=90°,∴∠EDB=∠C.∵∠B=∠B,∴∽.点睛:本题考查的是相似三角形的判定,熟知有两组角对应相等的两个三角形相似是解答此题的关键.20、(1)A种品牌套装每套进价为1元,B种品牌套装每套进价为7.5元;(2)最少购进A品牌工具套装2套.【解析】试题分析:(1)利用两种套装的套数作为等量关系列方程求解.(2)利用总获利大于等于120,解不等式.试题解析:(1)解:设B种品牌套装每套进价为x元,则A种品牌套装每套进价为(x+2.5)元.根据题意得:=2×,解得:x=7.5,经检验,x=7.5为分式方程的解,∴x+2.5=1.答:A种品牌套装每套进价为1元,B种品牌套装每套进价为7.5元.(2)解:设购进A品牌工具套装a套,则购进B品牌工具套装(2a+4)套,根据题意得:(13﹣1)a+(9.5﹣7.5)(2a+4)>120,解得:a>16,∵a为正整数,∴a取最小值2.答:最少购进A品牌工具套装2套.点睛:分式方程应用题:一设,一般题里有两个有关联的未知量,先设出一个未知量,并找出两个未知量的联系;二列,找等量关系,列方程,这个时候应该注意的是和差分倍关系:三解,正确解分式方程;四验,应用题要双检验;五答,应用题要写答.21、(1)50;(2)108°;(3).【解析】分析:(1)根据B组的人数和所占的百分比,即可求出这次被调查的总人数,从而补全统计图;用360乘以A组所占的百分比,求出A组的扇形圆心角的度数,再用总人数减去A、B、D组的人数,求出C组的人数;(2)画出树状图,由概率公式即可得出答案.本题解析:解:(1)调查的总人数是:19÷38%=50(人).C组的人数有50-15-19-4=12(人),补全条形图如图所示.(2)画树状图如下.共有12种等可能的结果,恰好选中甲的结果有6种,∴P(恰好选中甲)=.点睛:本题考查了列表法与树状图、条形统计图的综合运用.熟练掌握画树状图法,读懂统计图,从统计图中得到必要的信息是解决问题的关键.22、(1)证明见解析;(2).【解析】(2)易证∠APD=∠B=∠C,从而可证到△ABP∽△PCD,即可得到,即AB•CD=CP•BP,由AB=AC即可得到AC•CD=CP•BP;(2)由PD∥AB可得∠APD=∠BAP,即可得到∠BAP=∠C,从而可证到△BAP∽△BCA,然后运用相似三角形的性质即可求出BP的长.解:(1)∵AB=AC,∴∠B=∠C.∵∠APD=∠B,∴∠APD=∠B=∠C.∵∠APC=∠BAP+∠B,∠APC=∠APD+∠DPC,∴∠BAP=∠DPC,∴△ABP∽△PCD,∴,∴AB•CD=CP•BP.∵AB=AC,∴AC•CD=CP•BP;(2)∵PD∥AB,∴∠APD=∠BAP.∵∠APD=∠C,∴∠BAP=∠C.∵∠B=∠B,∴△BAP∽△BCA,∴.∵AB=10,BC=12,∴,∴BP=.“点睛”本题主要考查了相似三角形的判定与性质、等腰三角形的性质、平行线的性质、三角形外角的性质等知识,把证明AC•CD=CP•BP转化为证明AB•CD=CP•BP是解决第(1)小题的关键,证到∠BAP=∠C进而得到△BAP∽△BCA是解决第(2)小题的关键.23、(1)证明见解析;(2).【解析】

(1)由切线的性质可知∠DAB=90°,由直角所对的圆周为90°可知∠ACB=90°,根据同角的余角相等可知∠DAC=∠B,然后由等腰三角形的性质可知∠B=∠OCB,由对顶角的性质可知∠DCE=∠OCB,故此可知∠DAC=∠DCE;(2)题意可知AO=1,OD=3,DC=2,由勾股定理可知AD=,由∠DAC=∠DCE,∠D=∠D可知△DEC∽△DCA,故此可得到DC2=DE•AD,故此可求得DE=,于是可求得AE=.【详解】解:(1)∵AD是圆O的切线,∴∠DAB=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论