版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届锡林郭勒市重点中学九上数学期末监测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.如图,以为顶点的三角形与以为顶点的三角形相似,则这两个三角形的相似比为()A.2:1 B.3:1 C.4:3 D.3:22.已知点在线段上(点与点、不重合),过点、的圆记作为圆,过点、的圆记作为圆,过点、的圆记作为圆,则下列说法中正确的是()A.圆可以经过点 B.点可以在圆的内部C.点可以在圆的内部 D.点可以在圆的内部3.设,,是抛物线上的三点,则的大小关系为()A. B. C. D.4.如图,已知AB∥CD∥EF,AC=4,CE=1,BD=3,则DF的值为()A. B. C. D.15.在平面直角坐标系xOy中,以点(3,4)为圆心,4为半径的圆与y轴()A.相交 B.相切 C.相离 D.无法确定6.顺次连接矩形各边中点得到的四边形是()A.平行四边形 B.矩形 C.菱形 D.正方形7.从口袋中随机摸出一球,再放回口袋中,不断重复上述过程,共摸了150次,其中有50次摸到黑球,已知口袋中有黑球10个和若干个白球,由此估计口袋中大约有多少个白球()A.10个 B.20个 C.30个 D.无法确定8.中,,,,则的值是()A. B. C. D.9.在一个不透明的盒子中装有个白球,若于个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为,则黄球的个数为()A. B. C. D.10.在同一平面直角坐标系中,函数y=x﹣1与函数的图象可能是A. B. C. D.11.方程x2+2x-5=0经过配方后,其结果正确的是A. B.C. D.12.如图,AB,BC是⊙O的两条弦,AO⊥BC,垂足为D,若⊙O的直径为5,BC=4,则AB的长为()A.2 B.2 C.4 D.5二、填空题(每题4分,共24分)13.如图,让此转盘自由转动两次,两次指针都落在阴影部分区域(边界宽度忽略不记)的概率是____________.14.某班主任将其班上学生上学方式(乘公汽、骑自行车、坐小轿车、步行共4种)的调查结果绘制成下图所示的不完整的统计图,已知乘坐公汽上学的有12人,骑自行车上学的有24人,乘家长小轿车上学的有4人,则步行上学的学生人数在扇形统计图对应的扇形所占的圆心角的度数为_____.15.如图,在矩形中,,以点为圆心,以的长为半径画弧交于,点恰好是中点,则图中阴影部分的面积为___________.(结果保留)16.已知圆锥的侧面积为20πcm2,母线长为5cm,则圆锥底面半径为______cm.17.如图,是的直径,,弦,的平分线交于点,连接,则阴影部分的面积是________.(结果保留)18.在英语句子“Wishyousuccess”(祝你成功)中任选一个字母,这个字母为“s”的概率是.三、解答题(共78分)19.(8分)如图,在平面直角坐标系中,菱形ABCD的顶点C与原点O重合,点B在y轴的正半轴上,点A在函数y=(k>0,x>0)的图象上,点D的坐标为(4,3).(1)求k的值;(2)若将菱形ABCD沿x轴正方向平移,当菱形的顶点D落在函数y=(k>0,x>0)的图象上时,求菱形ABCD沿x轴正方向平移的距离.20.(8分)若为实数,关于的方程的两个非负实数根为、,求代数式的最大值.21.(8分)为积极响应新旧动能转换.提高公司经济效益.某科技公司近期研发出一种新型高科技设备,每台设备成本价为30万元,经过市场调研发现,每台售价为40万元时,年销售量为600台;每台售价为45万元时,年销售量为550台.假定该设备的年销售量y(单位:台)和销售单价(单位:万元)成一次函数关系.(1)求年销售量与销售单价的函数关系式;(2)根据相关规定,此设备的销售单价不得高于70万元,如果该公司想获得10000万元的年利润.则该设备的销售单价应是多少万元?22.(10分)如图,二次函数y=﹣2x2+x+m的图象与x轴的一个交点为A(1,0),另一个交点为B,且与y轴交于点C.(1)求m的值;(2)求点B的坐标;(3)该二次函数图象上是否有一点D(x,y)使S△ABD=S△ABC,求点D的坐标.23.(10分)如果某人滑雪时沿着一斜坡下滑了130米的同时,在铅垂方向上下降了50米,那么该斜坡的坡度是1∶_______24.(10分)已知关于的方程的一个实数根是3,求另一根及的值.25.(12分)(1)解方程(2)计算:26.如图,,以为直径作,交于点,过点作于点,交的延长线于点.(1)求证:是的切线;(2)若,,求的半径.
参考答案一、选择题(每题4分,共48分)1、A【分析】通过观察图形可知∠C和∠F是对应角,所以AB和DE是对应边;BC和EF是对应边,即可得出结论.【详解】解:观察图形可知∠C和∠F是对应角,所以AB和DE是对应边;BC和EF是对应边,∵BC=12,EF=6,∴.故选A.【点睛】此题重点考察学生对相似三角形性质的理解,掌握相似三角形性质是解题的关键.2、B【分析】根据已知条件确定各点与各圆的位置关系,对各个选项进行判断即可.【详解】∵点C在线段AB上(点C与点A、B不重合),过点A、B的圆记作为∴点C可以在圆的内部,故A错误,B正确;∵过点B、C的圆记作为圆∴点A可以在圆的外部,故C错误;∴点B可以在圆的外部,故D错误.故答案为B.【点睛】本题考查了点与圆的位置关系,根据题意画出各点与各圆的位置关系进行判断即可.3、D【分析】根据二次函数的性质得到抛物线的开口向上,对称轴为直线x=-2,然后根据三个点离对称轴的远近判断函数值的大小.【详解】,∵a=1>0,∴抛物线开口向上,对称轴为直线x=-2,∵离直线x=-2的距离最远,离直线x=-2的距离最近,∴.故选:D.【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.4、C【分析】根据平行线分线段成比例定理即可得出结论.【详解】解:∵直线AB∥CD∥EF,AC=4,CE=1,BD=3,∴即,解得DF=.
故选:C.【点睛】本题考查的是平行线分线段成比例定理,熟知三条平行线截两条直线,所得的对应线段成比例是解答此题的关键.5、A【分析】先找出圆心到y轴的距离,再与圆的半径进行比较,若圆心到y轴的距离小于半径,则圆与y轴相交,反之相离,若二者相等则相切故答案为A选项【详解】根据题意,我们得到圆心与y轴距离为3,小于其半径4,所以与y轴的关系为相交【点睛】本题主要考查了圆与直线的位置关系,熟练掌握圆心距与圆到直线距离的大小关系对应的位置关系是关键6、C【分析】根据三角形的中位线定理,得新四边形各边都等于原四边形的对角线的一半,进而可得连接对角线相等的四边形各边中点得到的四边形是菱形.【详解】解:如图,矩形中,分别为四边的中点,四边形是平行四边形,四边形是菱形.故选C.【点睛】本题主要考查了矩形的性质、菱形的判定,以及三角形中位线定理,关键是掌握三角形的中位线定理及菱形的判定.7、B【详解】解:摸了150次,其中有50次摸到黑球,则摸到黑球的频率是,设口袋中大约有x个白球,则,解得x=1.经检验:x=1是原方程的解故选B.8、D【分析】根据勾股定理求出BC的长度,再根据cos函数的定义求解,即可得出答案.【详解】∵AC=,AB=4,∠C=90°∴∴故答案选择D.【点睛】本题考查的是勾股定理和三角函数,比较简单,需要熟练掌握sin函数、cos函数和tan函数分别代表的意思.9、B【分析】根据题意可知摸出白球的概率=白球个数÷白球与黄球的和,代入求x即可.【详解】解:设黄球个数为x,∵在一个不透明的盒子中装有个白球,若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为,∴=8÷(8+x)∴x=4,经检验x=4是分式方程的解,故选:B【点睛】本题考查的是利用频率估计概率,正确理解题意是解题的关键.10、C【解析】试题分析:一次函数的图象有四种情况:①当,时,函数的图象经过第一、二、三象限;②当,时,函数的图象经过第一、三、四象限;③当,时,函数的图象经过第一、二、四象限;④当,时,函数的图象经过第二、三、四象限.因此,∵函数y=x﹣1的,,∴它的图象经过第一、三、四象限.根据反比例函数的性质:当时,图象分别位于第一、三象限;当时,图象分别位于第二、四象限.∵反比例函数的系数,∴图象两个分支分别位于第一、三象限.综上所述,符合上述条件的选项是C.故选C.11、C【详解】解:根据配方法的意义,可知在方程的两边同时加减一次项系数的一半的平方,可知,即,配方为.故选:C.【点睛】此题主要考查了配方法,解题关键是明确一次项的系数,然后在方程的两边同时加减一次项系数的一半的平方,即可求解.12、A【分析】连接BO,根据垂径定理得出BD,在△BOD中利用勾股定理解出OD,从而得出AD,在△ABD中利用勾股定理解出AB即可.【详解】连接OB,∵AO⊥BC,AO过O,BC=4,∴BD=CD=2,∠BDO=90°,由勾股定理得:OD===,∴AD=OA+OD=+=4,在Rt△ADB中,由勾股定理得:AB===2,故选:A.【点睛】本题考查圆的垂径定理及勾股定理的应用,关键在于熟练掌握相关的基础性质.二、填空题(每题4分,共24分)13、【分析】先将非阴影区域分成两等份,然后根据列表格列举所有等可能的结果与指针都落在阴影区域的情况,再利用概率公式即可求解.【详解】解:如图,将非阴影区域分成两等份,设三份区域分别为A,B,C,其中C为阴影区域,列表格如下,由表可知,共有9种结果,且每种结果出现的可能性相同,其中两次指针都落在阴影区域的有1种,为(C,C),所以两次指针都落在阴影区域的概率为P=.故答案为:【点睛】本题考查了列表法或树状图求两步事件概率问题,将非阴影区域分成两等份,保证是等可能事件是解答此题的关键.14、90°【分析】先根据骑自行车上学的学生有12人占25%,求出总人数,再根据步行上学的学生人数所对应的圆心角的度数为所占的比例乘以360度,即可求出答案.【详解】解:根据题意得:总人数是:12÷25%=48人,所以乘车部分所对应的圆心角的度数为360°×=90°;故答案为:90°.【点睛】此题主要考查了扇形统计图,读懂统计图,从统计图中得到必要的信息,列出算式是解决问题的关键.15、【分析】连接EC,先根据题意得出,再得出,然后计算出和的面积即可求解.【详解】连接EC,如下图所示:由题意可得:∵是中点∴∴∴∴∴∴故填:.【点睛】本题主要考查扇形面积的计算、矩形的性质、解直角三角形,准确作出辅助线是关键.16、1【分析】由圆锥的母线长是5cm,侧面积是20πcm2,求圆锥侧面展开扇形的弧长,然后再根据锥的侧面展开扇形的弧长等于圆锥的底面周长求解.【详解】解:由圆锥的母线长是5cm,侧面积是20πcm2,根据圆锥的侧面展开扇形的弧长为:=8π,再根据锥的侧面展开扇形的弧长等于圆锥的底面周长,可得=1cm.故答案为:1.【点睛】本题考查圆锥的计算,掌握公式正确计算是解题关键.17、【分析】连接OD,求得AB的长度,可以推知OA和OD的长度,然后由角平分线的性质求得∠AOD=90°;最后由扇形的面积公式、三角形的面积公式可以求得,阴影部分的面积=.【详解】解:连接,∵为的直径,∴,∵,∴,∴,∵平分,,∴,∴,∴,∴,∴阴影部分的面积.故答案为:.【点睛】本题综合考查了圆周角定理、含30度角的直角三角形以及扇形面积公式.18、【解析】试题解析:在英语句子“Wishyousuccess!”中共14个字母,其中有字母“s”4个.故其概率为.考点:概率公式.三、解答题(共78分)19、(1)k=32;(2)菱形ABCD平移的距离为.【分析】(1)由题意可得OD=5,从而可得点A的坐标,从而可得k的值;(2)将菱形ABCD沿x轴正方向平移,使得点D落在函数(x>0)的图象D’点处,由题意可知D’的纵坐标为3,从而可得横坐标,从而可知平移的距离.【详解】(1)过点D作x轴的垂线,垂足为F,∵点D的坐标为(4,3),∴OF=4,DF=3,∴OD=5,∴AD=5,∴点A坐标为(4,8),∴k=xy=4×8=32,∴k=32;(2)将菱形ABCD沿x轴正方向平移,使得点D落在函数(x>0)的图象D’点处,过点D’做x轴的垂线,垂足为F’.∵DF=3,∴D’F’=3,∴点D’的纵坐标为3,∵点D’在的图象上,∴3=,解得=,即∴菱形ABCD平移的距离为.考点:1.勾股定理;2.反比例函数;3.菱形的性质;4.平移.20、1【分析】根据根的判别式和根与系数的关系进行列式求解即可;【详解】∵,,,,,,,当时,原式=-15,当时,原式=1,代数式的最大值为1.【点睛】本题主要考查了一元二次方程的知识点,准确应用根的判别式和根与系数的关系是解题的关键.21、(1);(2)该公可若想获得10万元的年利润,此设备的销售单价应是3万元.【解析】分析:(1)根据点的坐标,利用待定系数法即可求出年销售量y与销售单价x的函数关系式;(2)设此设备的销售单价为x万元/台,则每台设备的利润为(x﹣30)万元,销售数量为(﹣10x+1)台,根据总利润=单台利润×销售数量,即可得出关于x的一元二次方程,解之取其小于70的值即可得出结论.详解:(1)设年销售量y与销售单价x的函数关系式为y=kx+b(k≠0),将(40,600)、(45,53)代入y=kx+b,得:,解得:,∴年销售量y与销售单价x的函数关系式为y=﹣10x+1.(2)设此设备的销售单价为x万元/台,则每台设备的利润为(x﹣30)万元,销售数量为(﹣10x+1)台,根据题意得:(x﹣30)(﹣10x+1)=10,整理,得:x2﹣130x+4000=0,解得:x1=3,x2=2.∵此设备的销售单价不得高于70万元,∴x=3.答:该设备的销售单价应是3万元/台.点睛:本题考查了待定系数法求一次函数解析式以及一元二次方程的应用,解题的关键是:(1)根据点的坐标,利用待定系数法求出函数关系式;(2)找准等量关系,正确列出一元二次方程.22、(1)1;(2)B(﹣,0);(3)D的坐标是(,1)或(,﹣1)或(,﹣1)【分析】(1)把点A的坐标代入函数解析式,利用方程来求m的值;(2)令y=0,则通过解方程来求点B的横坐标;(3)利用三角形的面积公式进行解答.【详解】解:(1)把A(1,0)代入y=﹣2x2+x+m,得﹣2×12+1+m=0,解得m=1;(2)由(1)知,抛物线的解析式为y=﹣2x2+x+1.令y=0,则﹣2x2+x+1=0,故x==,解得x1=﹣,x2=1.故该抛物线与x轴的交点是(﹣,0)和(1,0).∵点为A(1,0),∴另一个交点为B是(﹣,0);(3)∵抛物线解析式为y=﹣2x2+x+1,∴C(0,1),∴OC=1.∵S△ABD=S△ABC,∴点D与点C的纵坐标的绝对值相等,∴当y=1时,﹣2x2+
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024至2030年中国通风网行业投资前景及策略咨询研究报告
- 年度脂环烃竞争策略分析报告
- 2025届江苏省江阴初级中学高二物理第一学期期末教学质量检测模拟试题含解析
- 2025届浙江省杭州七县区物理高一上期中复习检测模拟试题含解析
- 2025届青海省海南市物理高一上期末统考试题含解析
- 2025届重庆市育仁中学物理高二第一学期期中联考模拟试题含解析
- 2025届辽宁省营口市物理高二第一学期期中调研模拟试题含解析
- 西藏拉萨市那曲第二高级中学2025届物理高三第一学期期中联考试题含解析
- 2025届浙江省嘉兴市重点名校物理高一上期中综合测试模拟试题含解析
- 福建省南安一中2025届物理高一上期末联考模拟试题含解析
- 跨越门槛童心出发-少先队仪式教育的成长探索之路 论文
- 数字媒体的传播者和受众
- cad及天正快捷键大全
- 磁共振室常用管理制度
- 森林防火通道规范
- 国家开放大学2021至2022年(202101-202207)《1439临床药理学》期末考试真题及答案完整版(共4套)
- GB/T 2910.1-2009纺织品定量化学分析第1部分:试验通则
- GB/T 27021.3-2021合格评定管理体系审核认证机构要求第3部分:质量管理体系审核与认证能力要求
- 井底的四只小青蛙
- FZ/T 52021-2012牛奶蛋白改性聚丙烯腈短纤维
- 打“两卡”共同防范电信网络诈骗 课件 - 高中安全主题班会
评论
0/150
提交评论