版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广西崇左市江州区2025届九上数学期末调研试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.二次函数y=-2(x+1)2+5的顶点坐标是()A.-1 B.5 C.(1,5) D.(-1,5)2.一元二次方程的根的情况为()A.没有实数根B.只有一个实数根C.有两个不相等的实数根D.有两个相等的实数根3.如图,在Rt△ABC中,AC=6,AB=10,则sinA的值()A. B. C. D.4.如图,、、分别切于、、点,若圆的半径为6,,则的周长为()A.10 B.12 C.16 D.205.下列函数中,的值随着逐渐增大而减小的是()A. B. C. D.6.⊙O的半径为15cm,AB,CD是⊙O的两条弦,AB∥CD,AB=24cm,CD=18cm,则AB和CD之间的距离是()A.21cm B.3cmC.17cm或7cm D.21cm或3cm7.如图,的半径为3,是的弦,直径,,则的长为()A. B. C. D.8.已知的半径为,点到直线的距离为,若直线与公共点的个数为个,则可取()A. B. C. D.9.反比例函数图象的一支如图所示,的面积为2,则该函数的解析式是()A. B. C. D.10.如图,的半径为,圆心到弦的距离为,则的长为()A. B. C. D.11.如图,在平面直角坐标系中,已知点,,以原点为位似中心,相似比为,把缩小,则点的对应点的坐标是()A.或 B. C. D.或12.学校要组织足球比赛.赛制为单循环形式(每两队之间赛一场).计划安排21场比赛,应邀请多少个球队参赛?设邀请x个球队参赛.根据题意,下面所列方程正确的是()A. B. C. D.二、填空题(每题4分,共24分)13.用配方法解方程时,可配方为,其中________.14.若2是方程x2﹣2kx+3=0的一个根,则方程的另一根为______.15.半径为10cm的半圆围成一个圆锥,则这个圆锥的高是__cm.16.二次函数的顶点坐标是__________.17.已知反比例函数y=的图象经过点(3,﹣4),则k=_____.18.若双曲线的图象在第二、四象限内,则的取值范围是________.三、解答题(共78分)19.(8分)(1)计算:(2)解方程:20.(8分)如图,矩形中,,,点为边延长线上的一点,过的中点作交边于,交边的延长线于,,交边于,交边于(1)当时,求的值;(2)猜想与的数量关系,并证明你的猜想21.(8分)2018年非洲猪瘟疫情暴发后,2019年猪肉价格不断走高,引起了民众与政府的高度关注,据统计:2019年12月份猪肉价格比2019年年初上涨了30%,某市民2019年12月3日在某超市购买1千克猪肉花了52元.(1)问:2019年年初猪肉的价格为每千克多少元?(2)某超市将进货价为每千克39元的猪肉,按2019年12月3日价格出售,平均一天能销售出100千克,经调查表明:猪肉的售价每千克下降1元,其日销售量就增加10千克,超市为了实现销售猪肉每天有1320元的利润,并且尽可能让顾客得到实惠,猪肉的售价应该下降多少元?22.(10分)如图,矩形纸片ABCD,将△AMP和△BPQ分别沿PM和PQ折叠(AP>AM),点A和点B都与点E重合;再将△CQD沿DQ折叠,点C落在线段EQ上点F处.(1)判断△AMP,△BPQ,△CQD和△FDM中有哪几对相似三角形?(不需说明理由)(2)如果AM=1,sin∠DMF=,求AB的长.23.(10分)如图,排球运动员站在点O处练习发球,将球从O点正上方2m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(x-6)2+h.已知球网与O点的水平距离为9m,高度为2.43m,球场的边界距O点的水平距离为18m.(1)当h=2.6时,求y与x的关系式(不要求写出自变量x的取值范围)(2)当h=2.6时,球能否越过球网?球会不会出界?请说明理由.24.(10分)平面直角坐标系xOy中,二次函数y=x2﹣2mx+m2+2m+2的图象与x轴有两个交点.(1)当m=﹣2时,求二次函数的图象与x轴交点的坐标;(2)过点P(0,m﹣1)作直线1⊥y轴,二次函数图象的顶点A在直线l与x轴之间(不包含点A在直线l上),求m的范围;(3)在(2)的条件下,设二次函数图象的对称轴与直线l相交于点B,求△ABO的面积最大时m的值.25.(12分)如图,在正方形中,为边的中点,点在边上,且,延长交的延长线于点.(1)求证:△∽△.(2)若,求的长.26.一次函数分别与轴、轴交于点、.顶点为的抛物线经过点.(1)求抛物线的解析式;(2)点为第一象限抛物线上一动点.设点的横坐标为,的面积为.当为何值时,的值最大,并求的最大值;(3)在(2)的结论下,若点在轴上,为直角三角形,请直接写出点的坐标.
参考答案一、选择题(每题4分,共48分)1、D【解析】直接利用顶点式的特点写出顶点坐标.【详解】因为y=2(x+1)2-5是抛物线的顶点式,根据顶点式的坐标特点可知,顶点坐标为(-1,5).故选:D.【点睛】主要考查了求抛物线的顶点坐标的方法,熟练掌握顶点式的特点是解题的关键.2、A【分析】根据根的判别式即可求出答案.【详解】由题意可知:△=4﹣4×5=﹣16<1.故选:A.【点睛】本题考查了一元二次方程根的判别式,解答本题的关键是熟练掌握一元二次方程根的判别式.3、A【分析】根据勾股定理得出BC的长,再根据sinA=代值计算即可.【详解】解:∵在Rt△ABC中,AC=6,AB=10,∴BC==8,∴sinA===;故选:A.【点睛】本题考查勾股定理及正弦的定义,熟练掌握正弦的表示是解题的关键.4、C【分析】根据切线的性质,得到直角三角形OAP,根据勾股定理求得PA的长;根据切线长定理,得AD=CD,CE=BE,PA=PB,从而求解.【详解】∵PA、PB、DE分别切⊙O于A、B、C点,
∴AD=CD,CE=BE,PA=PB,OA⊥AP.
在直角三角形OAP中,根据勾股定理,得AP==8,
∴△PDE的周长为2AP=1.
故选C.【点睛】此题综合运用了切线长定理和勾股定理.5、D【分析】分别利用一次函数、正比例函数、反比例函数、二次函数的增减性分析得出答案.【详解】A选项函数的图象是随着增大而增大,故本选项错误;B选项函数的对称轴为,当时随增大而减小故本选项错误;C选项函数,当或,随着增大而增大故本选项错误;D选项函数的图象是随着增大而减小,故本选项正确;故选D.【点睛】本题考查了三种函数的性质,了解它们的性质是解答本题的关键,难度不大.6、D【分析】作OE⊥AB于E,交CD于F,连结OA、OC,如图,根据平行线的性质得OF⊥CD,再利用垂径定理得到AE=AB=12cm,CF=CD=9cm,接着根据勾股定理,在Rt△OAE中计算出OE=9cm,在Rt△OCF中计算出OF=12cm,然后分类讨论:当圆心O在AB与CD之间时,EF=OF+OE;当圆心O不在AB与CD之间时,EF=OF-OE.【详解】解:作OE⊥AB于E,交CD于F,连结OA、OC,如图,
∵AB∥CD,
∴OF⊥CD,
∴AE=BE=AB=12cm,CF=DF=CD=9cm,
在Rt△OAE中,∵OA=15cm,AE=12cm,
∴OE=,
在Rt△OCF中,∵OC=15cm,CF=9cm,
∴OF=,
当圆心O在AB与CD之间时,EF=OF+OE=12+9=21cm(如图1);
当圆心O不在AB与CD之间时,EF=OF-OE=12-9=3cm(如图2);
即AB和CD之间的距离为21cm或3cm.
故选:D.【点睛】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理.学会运用分类讨论的思想解决数学问题.7、C【分析】连接OC,利用垂径定理以及圆心角与圆周角的关系求出;再利用弧长公式即可求出的长.【详解】解:连接OC(同弧所对的圆心角是圆周角的2倍)∵直径∴=(垂径定理)∴故选C【点睛】本题考查了垂径定理、圆心角与圆周角以及利用弧长公式求弧长,熟练掌握相关定理和公式是解答本题的关键.8、A【分析】根据直线和圆的位置关系判断方法,可得结论.【详解】∵直线m与⊙O公共点的个数为2个,
∴直线与圆相交,
∴d<半径,∴d<3,
故选:A.【点睛】本题考查了直线与圆的位置关系,掌握直线和圆的位置关系判断方法:设⊙O的半径为r,圆心O到直线l的距离为d:①直线l和⊙O相交⇔d<r②直线l和⊙O相切⇔d=r,③直线l和⊙O相离⇔d>r.9、D【分析】根据反比例函数系数k的几何意义,由△POM的面积为2,可知|k|=2,再结合图象所在的象限,确定k的值,则函数的解析式即可求出.【详解】解:△POM的面积为2,S=|k|=2,,又图象在第四象限,k<0,k=-4,反比例函数的解析式为:.故选D.【点睛】本题考查了反比例函数的比例系数k与其图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系,即S=|k|.10、D【分析】过点O作OC⊥AB于C,连接OA,根据勾股定理求出AC长,根据垂径定理得出AB=2CA,代入求出即可.【详解】过点O作OC⊥AB于C,连接OA,则OC=6,OA=10,由勾股定理得:,∵OC⊥AB,OC过圆心O,∴AB=2AC=16,故选D.【点睛】本题主要考查了勾股定理和垂径定理等知识点的应用,正确作出辅助线是关键.11、D【分析】利用以原点为位似中心,相似比为k,位似图形对应点的坐标的比等于k或-k,把B点的横纵坐标分别乘以或-即可得到点B′的坐标.【详解】解:∵以原点O为位似中心,相似比为,把△ABO缩小,
∴点B(-9,-3)的对应点B′的坐标是(-3,-1)或(3,1).
故选D.【点睛】本题考查了位似变换:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.12、B【解析】试题分析:设有x个队,每个队都要赛(x﹣1)场,但两队之间只有一场比赛,由题意得:,故选B.考点:由实际问题抽象出一元二次方程.二、填空题(每题4分,共24分)13、-6【分析】把方程左边配成完全平方,与比较即可.【详解】,,,可配方为,.故答案为:.【点睛】本题考查用配方法来解一元二次方程,熟练配方是解决此题的关键.14、.【解析】根据一元二次方程根与系数的关系即可得出答案.【详解】解:设方程的另一根为x1,又∵x2=2,∴2x1=3,解得x1=,故答案是:.【点睛】本题主要考查一元二次方程根与系数的关系,应该熟练掌握两根之和,两根之积.15、【分析】由半圆的半径可得出圆锥的母线及底面半径的长度,利用勾股定理即可求出圆锥的高.【详解】设底面圆的半径为r.∵半径为10cm的半圆围成一个圆锥,∴圆锥的母线l=10cm,∴,解得:r=5(cm),∴圆锥的高h(cm).故答案为5.【点睛】本题考查了圆锥的计算,利用勾股定理求出圆锥的高是解题的关键.16、(2,1)【分析】将解析式化为顶点式即可顶点答案.【详解】∵,∴二次函数的顶点坐标是(2,1),故答案为:(2,1).【点睛】此题考查二次函数的一般式化为顶点式的方法,顶点式解析式中各字母的意义,正确转化解析式的形式是解题的关键.17、-1.【分析】直接把点(3,﹣4)代入反比例函数y=,求出k的值即可.【详解】解:∵反比例函数y=的图象经过点(3,﹣4),∴﹣4=,解得k=﹣1.故答案为:﹣1.【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.18、m<8【分析】对于反比例函数:当k>0时,图象在第一、三象限;当k<0时,图象在第二、四象限.【详解】由题意得,解得故答案为:【点睛】本题考查的是反比例函数的性质,本题属于基础应用题,只需学生熟练掌握反比例函数的性质,即可完成.三、解答题(共78分)19、(1);(2)x1=1,.【分析】(1)代入特殊角的三角函数值,根据实数的运算法则计算即可;(2)利用提公因式法解方程即可.【详解】(1);(2)移项得:,提公因式得:,解得:,.【点睛】本题考查了特殊角的三角函数值及实数的运算、一元二次方程的解法,熟记特殊角的三角函数值,熟练掌握一元二次方程的解法是解题的关键.20、(1);(2),证明见解析【分析】(1)根据E为DP中点,,可得出EH=2,再利用平行线分线段对应成比例求解即可;(2)作交于点,可求证∽,利用相似三角形的性质求解即可.【详解】解:(1)∵四边形是矩形,∴∴∵∴,∵∴∴∴∴(2)答:证明:作交于点则,∵,,,∴∴∽∴∴【点睛】本题考查的知识点是相似三角形的判定定理及其性质以及平行线分线段成比例定理,解此题的关键是利用矩形的性质求出EH的长.21、(3)今年年初猪肉的价格为每千克3元;(3)猪肉的售价应该下降3元.【分析】(3)设3039年年初猪肉的价格为每千克x元,根据题意列出方程,解方程即可;(3)根据题意利用利润=每千克的利润×数量列出方程,解方程即可解决问题.【详解】解:(3)设今年年初猪肉的价格为每千克x元,依题意,得:(3+30%)x=53,解得:x=3.答:今年年初猪肉的价格为每千克3元.(3)设猪肉的售价应该下降y元,则每日可售出(300+30y)千克,依题意,得:(53﹣39﹣y)(300+30y)=3330,整理,得:y3﹣3y+3=0,解得:y3=3,y3=3.∵让顾客得到实惠,∴y=3.答:猪肉的售价应该下降3元.【点睛】本题主要考查一元一次方程及一元二次方程的应用,读懂题意列出方程是解题的关键.22、(1)△AMP∽△BPQ∽△CQD;(2)AB=6.【解析】根据题意得出三对相似三角形;设AP=x,有折叠关系可得:BP=AP=EP=x,AB=DC=2x,AM=1,根据△AMP∽△BPQ得:即,根据由△AMP∽△CQD得:即CQ=2,从而得出AD=BC=BQ+CQ=+2,MD=AD-AM=+2-1=+1,根据Rt△FDM中∠DMF的正弦值得出x的值,从而求出AB的值.【详解】(1)有三对相似三角形,即△AMP∽△BPQ∽△CQD(2)设AP=x,有折叠关系可得:BP=AP=EP=xAB=DC=2xAM=1由△AMP∽△BPQ得:即由△AMP∽△CQD得:即CQ=2AD=BC=BQ+CQ=+2MD=AD-AM=+2-1=+1又∵在Rt△FDM中,sin∠DMF=DF=DC=2x∴解得:x=3或x=(不合题意,舍去)∴AB=2x=6.考点:相似三角形的应用、三角函数、折叠图形的性质.23、(1)y=-(x-6)2+2.6;(2)球能过网;球会出界.【解析】解:(1)∵h=2.6,球从O点正上方2m的A处发出,∴y=a(x-6)2+h过(0,2)点,∴2=a(0-6)2+2.6,解得:a=-,所以y与x的关系式为:y=-(x-6)2+2.6.(2)当x=9时,y=-(x-6)2+2.6=2.45>2.43,所以球能过网;当y=0时,-(x-6)2+2.6=0,解得:x1=6+2>18,x2=6-2(舍去),所以会出界.24、(1)抛物线与x轴交点坐标为:(﹣2+,0)(﹣2﹣,0)(2)﹣3<m<﹣1(3)当m=﹣时,S最大=【解析】分析:(1)与x轴相交令y=0,解一元二次方程求解;(2)应用配方法得到顶点A坐标,讨论点A与直线l以及x轴之间位置关系,确定m取值范围.(3)在(2)的基础上表示△ABO的面积,根据二次函数性质求m.详解:(1)当m=﹣2时,抛物线解析式为:y=x2+4x+2令y=0,则x2+4x+2=0解得x1=﹣2+,x2=﹣2﹣抛物线与x轴交点坐标为:(﹣2+,0)(﹣2﹣,0)(2)∵y=x2﹣2mx+m2+2m+2=(x﹣m)2+2m+2∴抛物线顶点坐标为A(m,2m+2)∵二次函数图象的顶点A在直线l与x轴之间(不包含点A在直线l上)∴当直线1在x轴上方时><不等式无解当直线1在x轴下方时解得﹣3<m<﹣1(3)由(1)点A在点B上方,则AB=(2m+2)﹣(m﹣1)=m+3△ABO的面积S=(m+3)(﹣m)=﹣∵﹣<0∴当m=﹣时,S最大=点睛:本题以含有字母系数m的二次函数为背景,考查了二次函数图象性质以及分类讨论、数形结合的数学思想.25、(1)详见解析;(2)1.【分析】(1)先根据正方形的性质、直角三角形的性质得出,再加上一组直角相等,根据相似三角形的判定定理即可得证;(2)先根据正方形的性质、中点的性质求出AE的长,再根据勾股定理求出BE的长,最后根据相似三角形的性质、线段的和差即可得.【详解】(1)∵四边形ABCD为正方形,且;(2)∵四边形ABCD为正方形,点E为AD的中点在中,由(1)知,,即故的长为1.【点睛】本题考查了正方形的性质、勾股定理、相似三角形的判定定理与性质等知识点,较难的是
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024绿化带杂草管理协议样本
- 2024年适用租车服务协议综合范例
- 2024年工程项目食堂供应承包协议
- 2024年土建工程协议示范文本
- 2024在线支付安全规范SET协议
- 2024年个人贷款协议模板大全2
- 医生聘用合同的岗位职责
- 2024年师徒合作协议范本下载
- 2024年度西安二手房销售协议模板
- 2024年金融领域反担保协议参考样式
- (高清版)JTGT 5440-2018 公路隧道加固技术规范
- 牙周病学考试模拟题+答案
- 《精神科保护性约束实施及解除专家共识》解读
- 友善教育主题班会省公开课一等奖全国示范课微课金奖课件
- 医院岗前法律法规培训
- MOOC 机械原理-西北工业大学 中国大学慕课答案
- 高效的跨部门协作与沟通
- 基于PLC饮用水源初处理控制系统设计
- 贫血及低蛋白血症的护理
- 人教版(2019)选择性必修第三册Unit 1 Art 词形变化课件
- 中职学生人生职业规划
评论
0/150
提交评论