江苏省苏州市第三中学2025届九上数学期末学业水平测试试题含解析_第1页
江苏省苏州市第三中学2025届九上数学期末学业水平测试试题含解析_第2页
江苏省苏州市第三中学2025届九上数学期末学业水平测试试题含解析_第3页
江苏省苏州市第三中学2025届九上数学期末学业水平测试试题含解析_第4页
江苏省苏州市第三中学2025届九上数学期末学业水平测试试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省苏州市第三中学2025届九上数学期末学业水平测试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.下列四幅图案,在设计中用到了中心对称的图形是()A. B. C. D.2.如图,在莲花山滑雪场滑雪,需从山脚下乘缆车上山,缆车索道与水平线所成的角为,缆车速度为每分钟米,从山脚下到达山顶缆车需要分钟,则山的高度为()米.A. B.C. D.3.已知是单位向量,且,那么下列说法错误的是()A.∥ B.||=2 C.||=﹣2|| D.=﹣4.抛物线y=2(x﹣1)2+3的对称轴为()A.直线x=1B.直线y=1C.直线y=﹣1D.直线x=﹣15.如图,点M为反比例函数y=上的一点,过点M作x轴,y轴的垂线,分别交直线y=-x+b于C,D两点,若直线y=-x+b分别与x轴,y轴相交于点A,B,则AD·BC的值是()A.3 B.2 C.2 D.6.如图,正方形中,,以为圆心,长为半径画,点在上移动,连接,并将绕点逆时针旋转至,连接.在点移动的过程中,长度的最小值是()A. B. C. D.7.下列方程中,是一元二次方程的是()A. B.C. D.8.已知点A(﹣3,y1),B(﹣2,y2),C(3,y3)都在反比例函数y=(k<0)的图象上,则()A.y1<y2<y3 B.y3<y2<y1 C.y3<y1<y2 D.y2<y1<y39.已知正比例函数y=ax与反比例函数在同一坐标系中的图象如图,判断二次函数y=ax2+k在坐系中的大致图象是()A. B.C. D.10.用配方法解方程,方程应变形为()A. B. C. D.二、填空题(每小题3分,共24分)11.如果一个扇形的弧长等于它的半径,那么此扇形成为“等边扇形”.则半径为2的“等边扇形”的面积为.12.如图是某几何体的三视图及相关数据,则该几何体的侧面积是_____.13.二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)的图像上部分点的横坐标x和纵坐标y的对应值如下表x…-10123…y…-3-3-139…关于x的方程ax2+bx+c=0一个负数解x1满足k<x1<k+1(k为整数),则k=________.14.已知杭州市某天六个整点时的气温绘制成的统计图,则这六个整点时气温的中位数是.15.已知正六边形的边长为10,那么它的外接圆的半径为_____.16.反比例函数y=﹣的图象与一次函数y=﹣x+5的图象相交,其中一个交点坐标为(a,b),则=_____.17.如图,点A(m,2),B(5,n)在函数(k>0,x>0)的图象上,将该函数图象向上平移2个单位长度得到一条新的曲线,点A、B的对应点分别为A′、B′.图中阴影部分的面积为8,则k的值为.18.如图,在⊙O内有折线DABC,点B,C在⊙O上,DA过圆心O,其中OA=8,AB=12,∠A=∠B=60°,则BC=_____.三、解答题(共66分)19.(10分)如图,在平面直角坐标系中,己知二次函数的图像与y轴交于点B(0,4),与x轴交于点A(-1,0)和点D.(1)求二次函数的解析式;(2)求抛物线的顶点和点D的坐标;(3)在抛物线上是否存在点P,使得△BOP的面积等于?如果存在,请求出点P的坐标?如果不存在,请说明理由.20.(6分)如图是某货站传送货物的平面示意图.为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由改为,已知原传送带长为米.(1)求新传送带的长度;(2)如果需要在货物着地点的左侧留出2米的通道,试判断距离点5米的货物是否需要挪走,并说明理由.(参考数据:,.)21.(6分)有一个可以自由旋转的圆盘,被分成面积相等的3个扇形区,分别标有数字1,2,3,另有一个不透明的口袋中装有4个完全相同的小球,分别标有数字1,2,3,4(如图所示),小颖和小亮想通过游戏来决定谁代表学校参加歌咏比赛,游戏规则为:一个人转动圆盘,另一人从口袋中摸出一个小球,如果所摸球上的数字与圆盘上转出数字之和小于4,那么小颖去;否则小亮去.(1)用画树状图或列表的方法求出小颖参加比赛的概率;(2)你认为该游戏公平吗?请说明理由.22.(8分)如图,一次函数分别交y轴、x轴于A、B两点,抛物线过A、B两点.(1)求这个抛物线的解析式;(2)作垂直x轴的直线x=t,在第一象限交直线AB于M,交这个抛物线于N.求当t取何值时,MN有最大值?最大值是多少?23.(8分)抛物线上部分点的横坐标,纵坐标的对应值如下表:-3-2-1010430(1)把表格填写完整;(2)根据上表填空:①抛物线与轴的交点坐标是________和__________;②在对称轴右侧,随增大而_______________;③当时,则的取值范围是_________________;(3)请直接写出抛物线的解析式.24.(8分)平行四边形的对角线相交于点,的外接圆交于点且圆心恰好落在边上,连接,若.(1)求证:为切线.(2)求的度数.(3)若的半径为1,求的长.25.(10分)如图,是的直径,是上半圆的弦,过点作的切线交的延长线于点,过点作切线的垂线,垂足为,且与交于点,设,的度数分别是.用含的代数式表示,并直接写出的取值范围;连接与交于点,当点是的中点时,求的值.26.(10分)近年来,各地“广场舞”噪音干扰的问题倍受关注.相关人员对本地区15~65岁年龄段的市民进行了随机调查,并制作了如下相应的统计图.市民对“广场舞”噪音干扰的态度有以下五种:A.没影响B.影响不大C.有影响,建议做无声运动D.影响很大,建议取缔E.不关心这个问题根据以上信息解答下列问题:(1)根据统计图填空:,A区域所对应的扇形圆心角为度;(2)在此次调查中,“不关心这个问题”的有25人,请问一共调查了多少人?(3)将条形统计图补充完整;(4)若本地共有14万市民,依据此次调查结果估计本地市民中会有多少人给出建议?

参考答案一、选择题(每小题3分,共30分)1、D【解析】由题意根据中心对称图形的性质即图形旋转180°与原图形能够完全重合的图形是中心对称图形,依次对选项进行判断即可.【详解】解:A.旋转180°,不能与原图形能够完全重合不是中心对称图形;故此选项错误;B.旋转180°,不能与原图形能够完全重合不是中心对称图形;故此选项错误;C.旋转180°,不能与原图形能够完全重合不是中心对称图形;故此选项错误;D.旋转180°,能与原图形能够完全重合是中心对称图形;故此选项正确;故选:D.【点睛】本题主要考查中心对称图形的性质,根据中心对称图形的定义判断图形是解决问题的关键.2、C【分析】在中,利用∠BAC的正弦解答即可.【详解】解:在中,,,(米),∵,(米).故选.【点睛】本题考查了三角函数的应用,属于基础题型,熟练掌握三角函数的定义是解题的关键.3、C【详解】解:∵是单位向量,且,,∴,,,,故C选项错误,故选C.4、A【解析】解:∵y=2(x﹣1)2+3,∴该抛物线的对称轴是直线x=1.故选A.5、C【分析】设点M的坐标为(),将代入y=-x+b中求出C点坐标,同理求出D点坐标,再根据两点之间距离公式即可求解.【详解】解:设点M的坐标为(),将代入y=-x+b中,得到C点坐标为(),将代入y=-x+b中,得到D点坐标为(),∵直线y=-x+b分别与x轴,y轴相交于点A,B,∴A点坐标(0,b),B点坐标为(b,0),∴AD×BC=,故选:C.【点睛】本题考查的是一次函数及反比例函数的性质,先设出M点坐标,用M点的坐标表示出C、D两点的坐标是解答此题的关键.6、D【分析】通过画图发现,点的运动路线为以A为圆心、1为半径的圆,当在对角线CA上时,C最小,先证明△PBC≌△BA,则A=PC=1,再利用勾股定理求对角线CA的长,则得出C的长.【详解】如图,当在对角线CA上时,C最小,连接CP,

由旋转得:BP=B,∠PB=90°,

∴∠PBC+∠CB=90°,

∵四边形ABCD为正方形,

∴BC=BA,∠ABC=90°,

∴∠AB+∠CB=90°,

∴∠PBC=∠AB,在△PBC和△BA中,,

∴△PBC≌△BA,

∴A=PC=1,

在Rt△ABC中,AB=BC=4,由勾股定理得:,∴C=AC-A=,即C长度的最小值为,故选:D.【点睛】本题考查了正方形的性质、旋转的性质和最小值问题,寻找点的运动轨迹是本题的关键.7、B【解析】根据一元二次方程的定义进行判断即可.【详解】A.属于多项式,错误;B.属于一元二次方程,正确;C.未知数项的最高次数是2,但不属于整式方程,错误;D.属于整式方程,未知数项的最高次数是3,错误.故答案为:B.【点睛】本题考查了一元二次方程的性质以及定义,掌握一元二次方程的定义是解题的关键.8、C【分析】先根据函数解析式中的比例系数k确定函数图象所在的象限,再根据各象限内点的坐标特点及函数的增减性解答.【详解】∵在反比例函数y=中,k<0,∴此函数图象在二、四象限,∵﹣3<﹣1<0,∴点A(﹣3,y1),B(﹣1,y1)在第二象限,∴y1>0,y1>0,∵函数图象在第二象限内为增函数,﹣3<﹣1<0,∴0<y1<y1.∵3>0,∴C(3,y3)点在第四象限,∴y3<0,∴y1,y1,y3的大小关系为y3<y1<y1.故选:C.【点睛】此题考查的是反比例函数图象上点的坐标特点及平面直角坐标系中各象限内点的坐标特点,比较简单.9、B【解析】根据正比例函数y=ax与反比例函数y=的函数图象可知:a<0,k>0,然后根据二次函数图象的性质即可得出答案.【详解】正比例函数y=ax与反比例函数y=的函数图象可知:a<0,k>0,

则二次函数y=ax2+k的图象开口向下,且与y轴的交点在y轴的正半轴,

所以大致图象为B图象.

故选B.【点睛】本题考查了二次函数及正比例函数与反比例函数的图象,属于基础题,关键是注意数形结合的思想解题.10、D【分析】常数项移到方程的右边,两边配上一次项系数一半的平方,写成完全平方式即可得.【详解】解:∵,

∴,即,

故选:D.【点睛】本题考查配方法解一元二次方程,熟练掌握完全平方公式和配方法的基本步骤是解题的关键.二、填空题(每小题3分,共24分)11、1【解析】试题分析:根据题意可得圆心角的度数为:,则S==1.考点:扇形的面积计算.12、15π.【解析】试题分析:由三视图可知这个几何体是母线长为5,高为4的圆锥,∴a=2=6,∴底面半径为3,∴侧面积为:π×5×3=15π.考点:1.三视图;2.圆锥的侧面积.13、-1【分析】首先利用表中的数据求出二次函数,再利用求根公式解得x1,再利用夹逼法可确定x1

的取值范围,可得k.【详解】解:把x=0,y=-1,x=1,y=-1,x=-1,y=-1代入y=ax2+bx+c得,解得,∴y=x²+x-1,∵△=b2-4ac=12-4×1×(-1)=11,

∴x==−1±,

∵<0,∴=−1-<0,

∵-4≤-≤-1,

∴,

∴-1≤−1−≤,

∵整数k满足k<x1<k+1,

∴k=-1,

故答案为:-1.【点睛】本题考查了二次函数的图象和性质,解题的关键是求出二次函数的解析式.14、15.6【解析】试题分析:此题考查了折线统计图和中位数,掌握中位数的定义是本题的关键,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.把这些数从小到大排列为:4.5,10.5,15.3,15.9,19.6,20.1,最中间的两个数的平均数是(15.3+15.9)÷2=15.6(℃),则这六个整点时气温的中位数是15.6℃.考点:折线统计图;中位数15、1【分析】利用正六边形的概念以及正六边形外接圆的性质进而计算.【详解】边长为1的正六边形可以分成六个边长为1的正三角形,∴外接圆半径是1,故答案为:1.【点睛】本题考查了正六边形的概念以及正六边形外接圆的性质,掌握正六边形的外接圆的半径等于其边长是解题的关键.16、﹣【分析】根据函数图象上点的坐标特征得到ab=﹣3,a+b=5,把原式变形,代入计算即可.【详解】∵反比例函数的图象与一次函数y=﹣x+5的图象相交,其中一个交点坐标为(a,b),∴ab=﹣3,b+a=5,则,故答案为:﹣.【点睛】本题考查了反比例函数与一次函数的交点问题,掌握函数图象上点的坐标特征是解题的关键.17、2.【解析】试题分析:∵将该函数图象向上平移2个单位长度得到一条新的曲线,点A、B的对应点分别为A′、B′,图中阴影部分的面积为8,∴5﹣m=4,∴m=2,∴A(2,2),∴k=2×2=2.故答案为2.考点:2.反比例函数系数k的几何意义;2.平移的性质;3.综合题.18、1【分析】作OE⊥BC于E,连接OB,根据∠A、∠B的度数易证得△ABD是等边三角形,由此可求出OD、BD的长,设垂足为E,在Rt△ODE中,根据OD的长及∠ODE的度数易求得DE的长,进而可求出BE的长,由垂径定理知BC=2BE即可得出答案.【详解】作OE⊥BC于E,连接OB.∵∠A=∠B=60°,∴∠ADB=60°,∴△ADB为等边三角形,∴BD=AD=AB=12,∵OA=8,∴OD=4,又∵∠ADB=60°,∴DE=OD=2,∴BE=12﹣2=10,由垂径定理得BC=2BE=1故答案为:1.【点睛】本题考查了圆中的弦长计算,熟练掌握垂径定理,作出辅助线构造直角三角形是解题的关键.三、解答题(共66分)19、(1);(2)D的坐标为(3,0),顶点坐标为(1,);(3)满足条件的点P有两个,坐标分别为P1(,)、P2().【分析】(1)利用待定系数法求出二次函数解析式即可;

(2)根据二次函数的解析式得点D的坐标,将解析式化为顶点式可得顶点的坐标;

(3)设P的坐标为P(x,y),到y轴的距离为|x|,则S△BOP=•BO•|x|,解出x=±,进而得出P点坐标.【详解】解:(1)把点A(-1,0)和点B(0,4)代入二次函数中得:解得:所以二次函数的解析式为:;(2)根据(1)得点D的坐标为(3,0),=,∴顶点坐标为(1,);(3)存在这样的点P,设P的坐标为P(x,y),到y轴的距离为∣x∣∵S△BOP=•BO•∣x∣∴=×4•∣x∣解得:∣x∣=所以x=±把x=代入中得:即:y=,把x=-代入中得:即:y=-∴满足条件的点P有两个,坐标分别为P1(,)、P2().【点睛】本题考查待定系数法求二次函数解析式、抛物线的顶点坐标以及三角形面积等知识,掌握二次函数的性质、灵活运用待定系数法是解题的关键.20、(1)新传送带AC的长度为8米;(2)距离B点5米的货物不需要挪走,理由见解析【分析】(1)根据正弦的定义求出AD,根据直角三角形30度角的性质求出AC;

(2)根据正切函数的定义求出CD,求出PC的长度,比较大小得到答案.【详解】(1)在Rt△ABD中,∠ADB=90,,sin∠ABD=,∴,在Rt△ACD中,∠ADC=90°,∠ACD=30°,

∴AC=2AD=8,

答:新传送带AC的长度为8米;(2)距离B点5米的货物不需要挪走,

理由如下:在Rt△ABD中,∠ADB=90,∠ABD=45°,

∴BD=AD=4,在Rt△ACD中,∠ADC=90,∠ACD=30°,AC=8,∴(米),∴CB=CD-BD≈2.8,

PC=PB-CB≈2.2,

∵2.2>2,

∴距离B点5米的货物不需要挪走.【点睛】本题实际考查的是解直角三角形的应用,在两个直角三角形拥有公共边的情况下,先求出这条公共边是解答此类题目的关键.21、(1)图见解析,概率为;(2)不公平,理由见解析【分析】(1)首先根据题意画出树状图,由树状图求得所有等可能的结果与两指针所指数字之和和小于4的情况,则可求得小颖参加比赛的概率;(2)根据小颖获胜与小亮获胜的概率,比较概率是否相等,即可判定游戏是否公平.【详解】(1)画树状图得:∵共有12种等可能的结果,所指数字之和小于4的有3种情况,∴P(和小于4)==,∴小颖参加比赛的概率为:;(2)不公平,∵P(小颖)=,P(小亮)=.∴P(和小于4)≠P(和大于等于4),∴游戏不公平.【点睛】此题主要考查概率的求解,解题的关键是根据题意画出树状图进行求解.22、(1);(2)当t=2时,MN的最大值是4.【分析】(1)首先求出一次函数与坐标轴交点坐标,进而代入二次函数解析式得出b,c的值即可;

(2)根据作垂直x轴的直线x=t,得出M,N的坐标,进而根据坐标性质得出即可.【详解】解:(1)(1)∵一次函数分别交y轴、x

轴于A、B两点,

∴x=0时,y=2,y=0时,x=4,

∴A(0,2),B(4,0),将x=0,y=2代入代入y=-x2+bx+c得c=2将x=4,y=0代入代入y=-x2+bx+c,(2))∵作垂直x轴的直线x=t,在第一象限交直线AB于M,由题意易得从而得到当时,MN有最大值为:【点睛】在解题时要能灵运用二次函数的图象和性质求出二次函数的解析式,利用数形结合思想解题是本题的关键.23、(1)2;(2)①抛物线与轴的交点坐标是和;②随增大而减小;③的取值范围是;(2).【分析】(1)利用表中对应值的特征和抛物线的对称性得到抛物线的对称轴为直线x=-1,则x=0和x=-2时,y的值相等,都为2;

(2)①利用表中y=0时x的值可得到抛物线与x轴的交点坐标;

②设交点式y=a(x+2)(x-1),再把(0,2)代入求出a得到抛物线解析式为y=-x2-2x+2,则可判断抛物线的顶点坐标为(-1,1),抛物线开口向下,然后根据二次函数的性质解决问题;③由于x=-2时,y=2;当x=2时,y=-5,结合二次函数的性质可确定y的取值范围;

(2)由(2)得抛物线解析式.【详解】解:(1)∵x=-2,y=0;x=1,y=0,

∴抛物线的对称轴为直线x=-1,

∴x=0和x=-2时,y=2;故答案是:2;

(2)①∵x=-2,y=0;x=1,y=0,∴抛物线与x轴的交点坐标是(-2,0)和(1,0);故答案是:(-2,0)和(1,0);

②设抛物线解析式为y=a(x+2)(x-1),

把(0,2)代入得2=-2a,解得a=-1,

∴抛物线解析式为y=-(x+2)(x-1),即y=-x2-2x+2,

抛物线的顶点坐标为(-1,1),抛物线开口向下,

∴在对称轴右侧,y随x增大而减小;故答案是:减小;

③当x=-2时,y=2;当x=2时,y=-1-1+2=-5,当x=-1,y有最大值为1,

∴当-2<x<2时,则y的取值范围是-5<y≤1.故答案是:-5<y≤1;

(2)由(2)得抛物线解析式为y=-x2-2x+2,

故答案是:y=-x2-2x+2.【点睛】本题考查了抛物线解析式的求法及与x轴的交点问题:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点问题转化为关于x的一元二次方程的问题.也考查了二次函数的性质.24、(1)详见解析;(2);(3)【分析】(1)连接OB,根据平行四边形的性质得到∠BAD=∠BCD=45°,根据圆周角定理得到∠BOD=2∠BAD=90°,根据平行线的性质得到OB⊥BC,即可得到结论;(2)连接OM,根据平行四边形的性质得到BM=DM,根据直角三角形的性质得到OM=BM,求得∠OBM=60°,于是得到∠ADB=30°;(3)连接EM,过M作MF⊥AE于F,根据等腰三角形的性质得到∠MOF=∠MDF=30°,根据OM=OE=1,解直角三角形即可得到结论.【详解】(1)证明:连接OB,∵四边形ABCD是平行四边形,∴∠BAD=∠BCD=45°,∴∠BOD=2∠BAD=90°,∵AD∥BC,∴∠DOB+∠OBC=180°,∴∠OBC=90°,∴OB⊥BC,∴BC为⊙O切线;(2)解:连接OM,∵四边形ABCD是平行四边形,∴BM=DM,∵∠BOD=90°,∴OM=BM,∵OB=OM,∴OB=OM=BM,∴∠OBM=60°,∴∠ADB=30°;(3)解:连接EM,过M作MF⊥

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论