版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届四川省遂宁市安居区中考冲刺卷数学试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为()A.90° B.60° C.45° D.30°2.一个半径为24的扇形的弧长等于20π,则这个扇形的圆心角是()A.120° B.135° C.150° D.165°3.方程x2+2x﹣3=0的解是()A.x1=1,x2=3B.x1=1,x2=﹣3C.x1=﹣1,x2=3D.x1=﹣1,x2=﹣34.下列说法中,正确的是()A.不可能事件发生的概率为0B.随机事件发生的概率为C.概率很小的事件不可能发生D.投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次5.若(x﹣1)0=1成立,则x的取值范围是()A.x=﹣1 B.x=1 C.x≠0 D.x≠16.如图,点C是直线AB,DE之间的一点,∠ACD=90°,下列条件能使得AB∥DE的是()A.∠α+∠β=180° B.∠β﹣∠α=90° C.∠β=3∠α D.∠α+∠β=90°7.如图,平面直角坐标系中,矩形ABCD的边AB:BC=3:2,点A(3,0),B(0,6)分别在x轴,y轴上,反比例函数y=的图象经过点D,则k值为()A.﹣14 B.14 C.7 D.﹣78.如图,菱形中,对角线AC、BD交于点O,E为AD边中点,菱形ABCD的周长为28,则OE的长等于()A.3.5 B.4 C.7 D.149.某种品牌手机经过二、三月份再次降价,每部售价由1000元降到810元,则平均每月降价的百分率为()A.20% B.11% C.10% D.9.5%10.如图,△ABC中,AB=3,AC=4,BC=5,D、E分别是AC、AB的中点,则以DE为直径的圆与BC的位置关系是()A.相切 B.相交 C.相离 D.无法确定二、填空题(共7小题,每小题3分,满分21分)11.函数y=2xx+5的自变量x12.方程的解为__________.13.4的平方根是.14.已知正方形ABCD,AB=1,分别以点A、C为圆心画圆,如果点B在圆A外,且圆A与圆C外切,那么圆C的半径长r的取值范围是_____.15.某地区的居民用电,按照高峰时段和空闲时段规定了不同的单价.某户5月份高峰时段用电量是空闲时段用电量2倍,6月份高峰时段用电量比5月份高峰时段用电量少50%,结果6月份的用电量和5月份的用电量相等,但6月份的电费却比5月份的电费少25%,求该地区空闲时段民用电的单价比高峰时段的用电单价低的百分率是_____.16.三角形的每条边的长都是方程的根,则三角形的周长是.17.方程的解为.三、解答题(共7小题,满分69分)18.(10分)如图,在⊙O中,AB是直径,点C是圆上一点,点D是弧BC中点,过点D作⊙O切线DF,连接AC并延长交DF于点E.(1)求证:AE⊥EF;(2)若圆的半径为5,BD=6求AE的长度.19.(5分)已知关于x的分式方程=2①和一元二次方程mx2﹣3mx+m﹣1=0②中,m为常数,方程①的根为非负数.(1)求m的取值范围;(2)若方程②有两个整数根x1、x2,且m为整数,求方程②的整数根.20.(8分)已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是;以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是.21.(10分)如图,点P是⊙O外一点,请你用尺规画出一条直线PA,使得其与⊙O相切于点A,(不写作法,保留作图痕迹)22.(10分)在平面直角坐标系xOy中,已知两点A(0,3),B(1,0),现将线段AB绕点B按顺时针方向旋转90°得到线段BC,抛物线y=ax2+bx+c经过点C.(1)如图1,若抛物线经过点A和D(﹣2,0).①求点C的坐标及该抛物线解析式;②在抛物线上是否存在点P,使得∠POB=∠BAO,若存在,请求出所有满足条件的点P的坐标,若不存在,请说明理由;(2)如图2,若该抛物线y=ax2+bx+c(a<0)经过点E(2,1),点Q在抛物线上,且满足∠QOB=∠BAO,若符合条件的Q点恰好有2个,请直接写出a的取值范围.23.(12分)某区对即将参加中考的5000名初中毕业生进行了一次视力抽样调查,绘制出频数分布表和频数分布直方图的一部分.请根据图表信息回答下列问题:视力频数(人)频率4.0≤x<4.3200.14.3≤x<4.6400.24.6≤x<4.9700.354.9≤x<5.2a0.35.2≤x<5.510b(1)本次调查的样本为,样本容量为;在频数分布表中,a=,b=,并将频数分布直方图补充完整;若视力在4.6以上(含4.6)均属正常,根据上述信息估计全区初中毕业生中视力正常的学生有多少人?24.(14分)如图,已知∠AOB与点M、N求作一点P,使点P到边OA、OB的距离相等,且PM=PN(保留作图痕迹,不写作法)
参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】试题分析:根据勾股定理即可得到AB,BC,AC的长度,进行判断即可.试题解析:连接AC,如图:根据勾股定理可以得到:AC=BC=,AB=.∵()1+()1=()1.∴AC1+BC1=AB1.∴△ABC是等腰直角三角形.∴∠ABC=45°.故选C.考点:勾股定理.2、C【解析】
这个扇形的圆心角的度数为n°,根据弧长公式得到20π=,然后解方程即可.【详解】解:设这个扇形的圆心角的度数为n°,根据题意得20π=,解得n=150,即这个扇形的圆心角为150°.故选C.【点睛】本题考查了弧长公式:L=(n为扇形的圆心角的度数,R为扇形所在圆的半径).3、B【解析】
本题可对方程进行因式分解,也可把选项中的数代入验证是否满足方程.【详解】x2+2x-3=0,即(x+3)(x-1)=0,∴x1=1,x2=﹣3故选:B.【点睛】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.本题运用的是因式分解法.4、A【解析】试题分析:不可能事件发生的概率为0,故A正确;随机事件发生的概率为在0到1之间,故B错误;概率很小的事件也可能发生,故C错误;投掷一枚质地均匀的硬币100次,正面向上的次数为50次是随机事件,D错误;故选A.考点:随机事件.5、D【解析】试题解析:由题意可知:x-1≠0,
x≠1
故选D.6、B【解析】
延长AC交DE于点F,根据所给条件如果能推出∠α=∠1,则能使得AB∥DE,否则不能使得AB∥DE;【详解】延长AC交DE于点F.A.∵∠α+∠β=180°,∠β=∠1+90°,∴∠α=90°-∠1,即∠α≠∠1,∴不能使得AB∥DE;B.∵∠β﹣∠α=90°,∠β=∠1+90°,∴∠α=∠1,∴能使得AB∥DE;C.∵∠β=3∠α,∠β=∠1+90°,∴3∠α=90°+∠1,即∠α≠∠1,∴不能使得AB∥DE;D.∵∠α+∠β=90°,∠β=∠1+90°,∴∠α=-∠1,即∠α≠∠1,∴不能使得AB∥DE;故选B.【点睛】本题考查了平行线的判定方法:①两同位角相等,两直线平行;
②内错角相等,两直线平行;③同旁内角互补,两直线平行;④平行于同一直线的两条直线互相平行;同一平面内,垂直于同一直线的两条直线互相平行.7、B【解析】过点D作DF⊥x轴于点F,则∠AOB=∠DFA=90°,∴∠OAB+∠ABO=90°,∵四边形ABCD是矩形,∴∠BAD=90°,AD=BC,∴∠OAB+∠DAF=90°,∴∠ABO=∠DAF,∴△AOB∽△DFA,∴OA:DF=OB:AF=AB:AD,∵AB:BC=3:2,点A(3,0),B(0,6),∴AB:AD=3:2,OA=3,OB=6,∴DF=2,AF=4,∴OF=OA+AF=7,∴点D的坐标为:(7,2),∴k,故选B.8、A【解析】
根据菱形的四条边都相等求出AB,再根据菱形的对角线互相平分可得OB=OD,然后判断出OE是△ABD的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半求解即可.【详解】解:∵菱形ABCD的周长为28,∴AB=28÷4=7,OB=OD,∵E为AD边中点,∴OE是△ABD的中位线,∴OE=AB=×7=3.1.故选:A.【点睛】本题考查了菱形的性质,三角形的中位线平行于第三边并且等于第三边的一半,熟记性质与定理是解题的关键.9、C【解析】
设二,三月份平均每月降价的百分率为,则二月份为,三月份为,然后再依据第三个月售价为1,列出方程求解即可.【详解】解:设二,三月份平均每月降价的百分率为.根据题意,得=1.解得,(不合题意,舍去).答:二,三月份平均每月降价的百分率为10%【点睛】本题主要考查一元二次方程的应用,关于降价百分比的问题:若原数是a,每次降价的百分率为a,则第一次降价后为a(1-x);第二次降价后后为a(1-x)2,即:原数x(1-降价的百分率)2=后两次数.10、B【解析】
首先过点A作AM⊥BC,根据三角形面积求出AM的长,得出直线BC与DE的距离,进而得出直线与圆的位置关系.【详解】解:过点A作AM⊥BC于点M,交DE于点N,∴AM×BC=AC×AB,∴AM===2.1.∵D、E分别是AC、AB的中点,∴DE∥BC,DE=BC=2.5,∴AN=MN=AM,∴MN=1.2.∵以DE为直径的圆半径为1.25,∴r=1.25>1.2,∴以DE为直径的圆与BC的位置关系是:相交.故选B.【点睛】本题考查了直线和圆的位置关系,利用中位线定理得出BC到圆心的距离与半径的大小关系是解题的关键.二、填空题(共7小题,每小题3分,满分21分)11、x≠﹣1【解析】
根据分母不等于2列式计算即可得解.【详解】解:根据题意得x+1≠2,解得x≠﹣1.故答案为:x≠﹣1.【点睛】考查的知识点为:分式有意义,分母不为2.12、【解析】
两边同时乘,得到整式方程,解整式方程后进行检验即可.【详解】解:两边同时乘,得,解得,检验:当时,≠0,所以x=1是原分式方程的根,故答案为:x=1.【点睛】本题考查了解分式方程,熟练掌握解分式方程的一般步骤以及注意事项是解题的关键.13、±1.【解析】试题分析:∵,∴4的平方根是±1.故答案为±1.考点:平方根.14、﹣1<r<.【解析】
首先根据题意求得对角线AC的长,设圆A的半径为R,根据点B在圆A外,得出0<R<1,则-1<-R<0,再根据圆A与圆C外切可得R+r=,利用不等式的性质即可求出r的取值范围.【详解】∵正方形ABCD中,AB=1,
∴AC=,
设圆A的半径为R,
∵点B在圆A外,
∴0<R<1,
∴-1<-R<0,
∴-1<-R<.
∵以A、C为圆心的两圆外切,
∴两圆的半径的和为,
∴R+r=,r=-R,
∴-1<r<.
故答案为:-1<r<.【点睛】本题考查了圆与圆的位置关系,点与圆的位置关系,正方形的性质,勾股定理,不等式的性质.掌握位置关系与数量之间的关系是解题的关键.15、60%【解析】
设空闲时段民用电的单价为x元/千瓦时,高峰时段民用电的单价为y元/千瓦时,该用户5月份空闲时段用电量为a千瓦时,则5月份高峰时段用电量为2a千瓦时,6月份空闲时段用电量为2a千瓦时,6月份高峰时段用电量为a千瓦时,根据总价=单价×数量结合6月份的电费却比5月份的电费少25%,即可得出关于x,y的二元一次方程,解之即可得出x,y之间的关系,进而即可得出结论.【详解】设空闲时段民用电的单价为x元/千瓦时,高峰时段民用电的单价为y元/千瓦时,该用户5月份空闲时段用电量为a千瓦时,则5月份高峰时段用电量为2a千瓦时,6月份空闲时段用电量为2a千瓦时,6月份高峰时段用电量为a千瓦时,依题意,得:(1﹣25%)(ax+2ay)=2ax+ay,解得:x=0.4y,∴该地区空闲时段民用电的单价比高峰时段的用电单价低×100%=60%.故答案为60%.【点睛】本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.16、6或2或12【解析】
首先用因式分解法求得方程的根,再根据三角形的每条边的长都是方程的根,进行分情况计算.【详解】由方程,得=2或1.当三角形的三边是2,2,2时,则周长是6;当三角形的三边是1,1,1时,则周长是12;当三角形的三边长是2,2,1时,2+2=1,不符合三角形的三边关系,应舍去;当三角形的三边是1,1,2时,则三角形的周长是1+1+2=2.综上所述此三角形的周长是6或12或2.17、.【解析】试题分析:首先去掉分母,观察可得最简公分母是,方程两边乘最简公分母,可以把分式方程转化为整式方程求解,然后解一元一次方程,最后检验即可求解:,经检验,是原方程的根.三、解答题(共7小题,满分69分)18、(1)详见解析;(2)AE=6.1.【解析】
(1)连接OD,利用切线的性质和三角形的内角和证明OD∥EA,即可证得结论;(2)利用相似三角形的判定和性质解答即可.【详解】(1)连接OD,∵EF是⊙O的切线,∴OD⊥EF,∵OD=OA,∴∠ODA=∠OAD,∵点D是弧BC中点,∴∠EAD=∠OAD,∴∠EAD=∠ODA,∴OD∥EA,∴AE⊥EF;(2)∵AB是直径,∴∠ADB=90°,∵圆的半径为5,BD=6∴AB=10,BD=6,在Rt△ADB中,,∵∠EAD=∠DAB,∠AED=∠ADB=90°,∴△AED∽△ADB,∴,即,解得:AE=6.1.【点睛】本题考查了切线的性质,相似三角形的判定和性质,勾股定理的应用以及圆周角定理,关键是利用切线的性质和相似三角形判定和性质进行解答.19、(1)且,;(2)当m=1时,方程的整数根为0和3.【解析】
(1)先解出分式方程①的解,根据分式的意义和方程①的根为非负数得出的取值;
(2)根据根与系数的关系得到x1+x2=3,,根据方程的两个根都是整数可得m=1或.结合(1)的结论可知m1.解方程即可.【详解】解:(1)∵关于x的分式方程的根为非负数,∴且.又∵,且,∴解得且.又∵方程为一元二次方程,∴.综上可得:且,.(2)∵一元二次方程有两个整数根x1、x2,m为整数,∴x1+x2=3,,∴为整数,∴m=1或.又∵且,,∴m1.当m=1时,原方程可化为.解得:,.∴当m=1时,方程的整数根为0和3.【点睛】考查了解分式方程,一元二次方程根与系数的关系,解一元二次方程等,熟练掌握方程的解法是解题的关键.20、(1)画图见解析,(2,-2);(2)画图见解析,(1,0);【解析】
(1)将△ABC向下平移4个单位长度得到的△A1B1C1,如图所示,找出所求点坐标即可;(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,如图所示,找出所求点坐标即可.【详解】(1)如图所示,画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是(2,-2);(2)如图所示,以B为位似中心,画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是(1,0),故答案为(1)(2,-2);(2)(1,0)【点睛】此题考查了作图-位似变换与平移变换,熟练掌握位似变换与平移变换的性质是解本题的关键.21、答案见解析【解析】
连接OP,作线段OP的垂直平分线MN交OP于点K,以点K为圆心OK为半径作⊙K交⊙O于点A,A′,作直线PA,PA′,直线PA,PA′即为所求.【详解】解:连接OP,作线段OP的垂直平分线MN交OP于点K,以点K为圆心OK为半径作⊙K交⊙O于点A,A′,作直线PA,PA′,直线PA,PA′即为所求.【点睛】本题考查作图−复杂作图,解题的关键是灵活运用所学知识解决问题.22、(1)①y=﹣x2+x+3;②P(,)或P'(,﹣);(2)≤a<1;【解析】
(1)①先判断出△AOB≌△GBC,得出点C坐标,进而用待定系数法即可得出结论;②分两种情况,利用平行线(对称)和直线和抛物线的交点坐标的求法,即可得出结论;(2)同(1)②的方法,借助图象即可得出结论.【详解】(1)①如图2,∵A(1,3),B(1,1),∴OA=3,OB=1,由旋转知,∠ABC=91°,AB=CB,∴∠ABO+∠CBE=91°,过点C作CG⊥OB于G,∴∠CBG+∠BCG=91°,∴∠ABO=∠BCG,∴△AOB≌△GBC,∴CG=OB=1,BG=OA=3,∴OG=OB+BG=4∴C(4,1),抛物线经过点A(1,3),和D(﹣2,1),∴,∴,∴抛物线解析式为y=﹣x2+x+3;②由①知,△AOB≌△EBC,∴∠BAO=∠CBF,∵∠POB=∠BAO,∴∠POB=∠CBF,如图1,OP∥BC,∵B(1,1),C(4,1),∴直线BC的解析式为y=x﹣,∴直线OP的解析式为y=x,∵抛物线解析式为y=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年可持续能源投资试题及答案
- 2026年普通高考生物科目生态学理论测试试卷及答案
- 井点降水工程施工方案
- 2025年环保工程技术员资格认定考试试题及答案解析
- 2025年工业机器人系统运维员等级认定试卷及答案
- 2025年临床研究协调员临床试验质量控制模拟试卷及答案
- 高等数学概念辨析练习试题及答案
- 2026年工业设计师注册变更考试标准试卷及答案
- 2026年内蒙古乌兰察布市高职单招英语考试题库(含答案)
- 2026年河南省南阳市高职单招语文考试题库(含答案)
- 2026年高考地理压轴训练卷2
- 护理儿科中医题库及答案解析
- 2025年事业单位笔试-云南-云南卫生公共基础(医疗招聘)历年参考题库含答案解析
- 2025年重庆市中考道德与法治真题(原卷版)
- 五年级上册数学每日一练(15天)寒假作业
- 山东省东营市垦利区(五四制)2024-2025学年六年级上学期期末考试地理试题
- 龋病的病因及发病过程(牙体牙髓病学课件)
- 马克思主义哲学原理名词解释
- GB/T 42925-2023互联网金融个人网络消费信贷信息披露
- 2023年中国西电集团招聘笔试题库及答案解析
- GB/T 14848-1993地下水质量标准
评论
0/150
提交评论