版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省玉溪市新平县2025届九年级数学第一学期期末统考试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.时钟上的分针匀速旋转一周需要60分钟,则经过10分钟,分针旋转了().A.10° B.20° C.30° D.60°2.某单位进行内部抽奖,共准备了100张抽奖券,设一等奖10个,二等奖20个,三等奖30个.若每张抽奖券获奖的可能性相同,则1张抽奖券中奖的概率是()A.0.1 B.0.2 C.0.3 D.0.63.下列方程中,没有实数根的方程是()A.(x-1)2=2C.3x24.已知α为锐角,且sin(α﹣10°)=,则α等于()A.70° B.60° C.50° D.30°5.抛掷一枚均匀的骰子,所得的点数能被3整除的概率为()A. B. C. D.6.如图,△ABC在边长为1个单位的方格纸中,它的顶点在小正方形的顶点位置.如果△ABC的面积为10,且sinA=,那么点C的位置可以在()A.点C1处 B.点C2处 C.点C3处 D.点C4处7.方程的解是()A. B., C., D.8.如图,正方形的顶点分别在轴和轴上,与双曲线恰好交于的中点.若,则的值为()A.6 B.8 C.10 D.129.当压力F(N)一定时,物体所受的压强p(Pa)与受力面积S(m2)的函数关系式为P=(S≠0),这个函数的图象大致是()A. B.C. D.10.在Rt△ABC中,∠C=900,AC=4,AB=5,则sinB的值是()A. B. C. D.11.已知关于的一元二次方程的两个根分别是,,且满足,则的值是()A.0 B. C.0或 D.或012.如图所示,是二次函数y=ax2﹣bx+2的大致图象,则函数y=﹣ax+b的图象不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空题(每题4分,共24分)13.如图,在平面直角坐标系中,已知点A(1,0),B(1﹣a,0),C(1+a,0)(a>0),点P在以D(4,4)为圆心,1为半径的圆上运动,且始终满足∠BPC=90°,则a的最大值是______.14.一艘观光游船从港口以北偏东的方向出港观光,航行海里至处时发生了侧翻沉船事故,立即发出了求救信号,一艘在港口正东方向的海警船接到求救信号,测得事故船在它的北偏东方向,马上以海里每小时的速度前往救援,海警船到达事故船处所需的时间大约为________小时(用根号表示).15.△ABC与△A′B′C′是位似图形,且△ABC与△A′B′C′的位似比是1:2,已知△ABC的面积是3,则△A′B′C′的面积是_____.16.如图1是一种广场三联漫步机,其侧面示意图,如图2所示,其中,.①点到地面的高度是__________.②点到地面的高度是____________.17.设x1,x2是一元二次方程7x2﹣5=x+8的两个根,则x1+x2的值是_____.18.已知点A(3,y1)、B(2,y2)都在抛物线y=﹣(x+1)2+2上,则y1与y2的大小关系是_____.三、解答题(共78分)19.(8分)如图①,已知抛物线y=ax2+bx+c的图像经过点A(0,3)、B(1,0),其对称轴为直线l:x=2,过点A作AC∥x轴交抛物线于点C,∠AOB的平分线交线段AC于点E,点P是抛物线上的一个动点,设其横坐标为m.(1)求抛物线的解析式;(2)若动点P在直线OE下方的抛物线上,连结PE、PO,当m为何值时,四边形AOPE面积最大,并求出其最大值;(3)如图②,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P使△POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.20.(8分)如图,抛物线()与双曲线相交于点、,已知点坐标,点在第三象限内,且的面积为3(为坐标原点).(1)求实数、、的值;(2)在该抛物线的对称轴上是否存在点使得为等腰三角形?若存在请求出所有的点的坐标,若不存在请说明理由.(3)在坐标系内有一个点,恰使得,现要求在轴上找出点使得的周长最小,请求出的坐标和周长的最小值.21.(8分)如图,张大叔从市场上买回一块矩形铁皮,他将此矩形铁皮的四个角各剪去一个边长为米的正方形后,剩下的部分刚好能围成一个容积为米的无盖长方体箱子,且此长方体箱子的底面长比宽多米,现已知购买这种铁皮每平方米需元钱,算一算张大叔购回这张矩形铁皮共花了________元钱.22.(10分)一个批发商销售成本为20元/千克的某产品,根据物价部门规定:该产品每千克售价不得超过90元,在销售过程中发现的售量y(千克)与售价x(元/千克)满足一次函数关系,对应关系如下表:售价x(元/千克)…50607080…销售量y(千克)…100908070…(1)求y与x的函数关系式;(2)该批发商若想获得4000元的利润,应将售价定为多少元?(3)该产品每千克售价为多少元时,批发商获得的利润w(元)最大?此时的最大利润为多少元?23.(10分)如图,折叠边长为的正方形,使点落在边上的点处(不与点,重合),点落在点处,折痕分别与边、交于点、,与边交于点.证明:(1);(2)若为中点,则;(3)的周长为.24.(10分)定义:在平面直角坐标系中,抛物线()与直线交于点、(点在点右边),将抛物线沿直线翻折,翻折前后两抛物线的顶点分别为点、,我们将两抛物线之间形成的封闭图形称为惊喜线,四边形称为惊喜四边形,对角线与之比称为惊喜度(Degreeofsurprise),记作.(1)如图(1)抛物线沿直线翻折后得到惊喜线.则点坐标,点坐标,惊喜四边形属于所学过的哪种特殊平行四边形?,为.(2)如果抛物线()沿直线翻折后所得惊喜线的惊喜度为1,求的值.(3)如果抛物线沿直线翻折后所得的惊喜线在时,其最高点的纵坐标为16,求的值并直接写出惊喜度.25.(12分)锐角中,,为边上的高线,,两动点分别在边上滑动,且,以为边向下作正方形(如图1),设其边长为.(1)当恰好落在边上(如图2)时,求;(2)正方形与公共部分的面积为时,求的值.26.如图,在□ABCD中,AB=5,BC=8.(1)作∠ABC的角平分线交线段AD于点E(用尺规作图,保留作图痕迹,不要求写作法):(2)在(1)的条件下,求ED的长.
参考答案一、选择题(每题4分,共48分)1、D【分析】先求出时钟上的分针匀速旋转一分钟时的度数为6°,再求10分钟分针旋转的度数就简单了.【详解】解:∵时钟上的分针匀速旋转一周的度数为360°,时钟上的分针匀速旋转一周需要60分钟,则时钟上的分针匀速旋转一分钟时的度数为:360÷60=6°,那么10分钟,分针旋转了10×6°=60°,故选:D.【点睛】本题考查了生活中的旋转现象,明确分针旋转一周,分针旋转了360°,所以时钟上的分针匀速旋转一分钟时的度数,是解答本题的关键.2、D【分析】直接利用概率公式进行求解,即可得到答案.【详解】解:∵共准备了100张抽奖券,设一等奖10个,二等奖20个,三等奖30个.∴1张抽奖券中奖的概率是:=0.6,故选:D.【点睛】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.3、D【解析】先把方程化为一般式,再分别计算各方程的判别式的值,然后根据判别式的意义判断方程根的情况.【详解】解:A、方程化为一般形式为:x2-2x-1=0,△=(−2)2−4×1×(−1)=8>0,方程有两个不相等的实数根,所以B、方程化为一般形式为:2x2-x-3=0,△=(−1)2−4×2×(−3)=25>0,方程有两个不相等的实数根,所以C、△=(−2)2−4×3×(−1)=16>0,方程有两个不相等的实数根,所以C选项错误;D、△=22−4×1×4=−12<0,方程没有实数根,所以D选项正确.故选:D.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2−4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.4、A【分析】根据特殊角的三角函数值可得α﹣10°=60°,进而可得α的值.【详解】解:∵sin(α﹣10°)=,∴α﹣10°=60°,∴α=70°.故选A.【点睛】本题考查特殊角的三角函数值,特殊角的三角函数值的计算在中考中经常出现,题型以选择题、填空题为主.5、B【解析】抛掷一枚骰子有1、2、3、4、5、6种可能,其中所得的点数能被3整除的有3、6这两种,∴所得的点数能被3整除的概率为,故选B.【点睛】本题考查了简单的概率计算,熟记概率的计算公式是解题的关键.6、D【解析】如图:∵AB=5,,∴D=4,∵,∴,∴AC=4,∵在RT△AD中,D,AD=8,∴A=,故答案为D.7、B【分析】用因式分解法求解即可得到结论.【详解】∵x2﹣3x=0,∴x(x﹣3)=0,则x=0或x﹣3=0,解得:,.故选:B.【点睛】本题考查了解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解答本题的关键.8、D【分析】作EH⊥x轴于点H,EG⊥y轴于点G,根据“OB=2OA”分别设出OB和OA的长度,利用矩形的性质得出△EBG∽△BAO,再根据相似比得出BG和EG的长度,进而写出点E的坐标代入反比例函数的解析式,即可得出答案.【详解】作EH⊥x轴于点H,EG⊥y轴于点G设AO=a,则OB=2OA=2a∵ABCD为正方形∴∠ABC=90°,AB=BC∵EG⊥y轴于点G∴∠EGB=90°∴∠EGB=∠BOA=90°∠EBG+∠BEG=90°∴∠BEG=∠ABO∴△EBG∽△BAO∴∵E是BC的中点∴∴∴BG=,EG=a∴OG=BO-BG=∴点E的坐标为∵E在反比例函数上面∴解得:∴AO=,BO=故答案选择D.【点睛】本题考查的是反比例函数与几何的综合,难度系数较高,解题关键是根据题意求出点E的坐标.9、C【分析】根据实际意义以及函数的解析式,根据函数的类型,以及自变量的取值范围即可进行判断.【详解】解:当F一定时,P与S之间成反比例函数,则函数图象是双曲线,同时自变量是正数.故选:C.【点睛】此题主要考查了反比例函数的应用,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用实际意义确定其所在的象限.10、D【解析】试题分析:正弦的定义:正弦由题意得,故选D.考点:锐角三角函数的定义点评:本题属于基础应用题,只需学生熟练掌握正弦的定义,即可完成.11、C【分析】首先根据一元二次方程根与系数关系得到两根之和和两根之积,然后把x12+x22转换为(x1+x2)2-2x1x2,然后利用前面的等式即可得到关于m的方程,解方程即可求出结果.【详解】解:∵x1、x2是一元二次方程x2-mx+2m-1=0的两个实数根,
∴x1+x2=-(2m+1),x1x2=m-1,
∵x12+x22=(x1+x2)2-2x1x2=3,
∴[-(2m+1)]2-2(m-1)=3,
解得:m1=0,m2=,
又∵方程x2-mx+2m-1=0有两个实数根,
∴△=(2m+1)2-4(m-1)≥0,
∴当m=0时,△=5>0,当m=时,△=6>0
∴m1=0,m2=都符合题意.故选:C.【点睛】本题考查一元二次方程根与系数的关系、完全平方公式,解题关键是熟练掌握一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1,x2,则x1+x2=-,x1•x2=.12、A【解析】解:∵二次函数y=ax2﹣bx+2的图象开口向上,∴a>0;∵对称轴x=﹣<0,∴b<0;因此﹣a<0,b<0∴综上所述,函数y=﹣ax+b的图象过二、三、四象限.即函数y=﹣ax+b的图象不经过第一象限.故选A.二、填空题(每题4分,共24分)13、1【分析】首先证明AB=AC=a,根据条件可知PA=AB=AC=a,求出⊙D上到点A的最大距离即可解决问题.【详解】∵A(1,0),B(1﹣a,0),C(1+a,0)(a>0),∴AB=1﹣(1﹣a)=a,CA=a+1﹣1=a,∴AB=AC,∵∠BPC=90°,∴PA=AB=AC=a,如图延长AD交⊙D于P′,此时AP′最大,∵A(1,0),D(4,4),∴AD=5,∴AP′=5+1=1,∴a的最大值为1.故答案为1.【点睛】圆外一点到圆上一点的距离最大值为点到圆心的距离加半径,最小值为点到圆心的距离减去半径.14、【分析】过点C作CD⊥AB交AB延长线于D.先解Rt△ACD得出CD=AC=40海里,再解Rt△CBD中,得出BC=(海里),然后根据时间=路程÷速度即可求出海警船到大事故船C处所需的时间.【详解】解:如图,过点C作CD⊥AB交AB延长线于D.在Rt△ACD中,∵∠ADC=90°,∠CAD=30°,AC=60海里,∴CD=AC=30海里.在Rt△CBD中,∵∠CDB=90°,∠CBD=90°-37°=53°,∴BC=(海里),∴海警船到大事故船C处所需的时间大约为:20÷40=(小时).故答案为.【点睛】本题考查了解直角三角形的应用-方向角问题,难度适中,作出辅助线构造直角三角形是解题的关键.15、1【分析】根据位似是相似的特殊形式,位似比等于相似比,其对应的面积比等于相似比的平方进行解答即可.【详解】解:∵△ABC与△A′B′C′是位似图形,位似比是1:2,∴△ABC∽△A′B′C′,相似比是1:2,∴△ABC与△A′B′C′的面积比是1:4,又△ABC的面积是3,∴△A′B′C′的面积是1,故答案为1.【点睛】本题考查的是位似变换的概念和性质,掌握位似是相似的特殊形式,位似比等于相似比,其对应的面积比等于相似比的平方是解题的关键.16、【分析】①过点A作,垂足为F,得出,BF=40,利用勾股定理可得出AF的长,即A到地面的高度②过点D作,垂足为H,可得出,,可求出AH的长度,从而得出D到底面的高度为AH+AF.【详解】解:过点A作,垂足为F,过点D作,垂足为H,如下图:①∵,∴,BF=40cm∴∴A到地面的高度为:.②∵∴,∴,∴∴AH=10,∴D到底面的高度为AH+AF=(10+)cm.【点睛】本题考查的知识点是等腰三角形的性质以及相似三角形的判定与性质,解题的关键是弄清题意,结合题目作出辅助线,再利用相似三角形性质求解.17、【解析】把方程化为一般形式,利用根与系数的关系直接求解即可.【详解】把方程7x2-5=x+8化为一般形式可得7x2-x-13=0,
∵x1,x2是一元二次方程7x2-5=x+8的两个根,
∴x1+x2=.故答案是:.【点睛】主要考查根与系数的关系,掌握一元二次方程的两根之和等于-、两根之积等于是解题的关键.18、y1<y1【分析】先求得函数的对称轴为,再判断、在对称轴右侧,从而判断出与的大小关系.【详解】∵函数y=﹣(x+1)1+1的对称轴为,∴、在对称轴右侧,∵抛物线开口向下,在对称轴右侧y随x的增大而减小,且3>1,∴y1<y1.故答案为:y1<y1.【点睛】本题考查了待定系数法二次函数图象上点的特征,利用已知解析式得出对称轴进而利用二次函数增减性得出答案是解题关键.三、解答题(共78分)19、(1)y=x2-4x+3.(2)当m=时,四边形AOPE面积最大,最大值为.(3)P点的坐标为:P1(,),P2(,),P3(,),P4(,).【解析】分析:(1)利用对称性可得点D的坐标,利用交点式可得抛物线的解析式;(2)设P(m,m2-4m+3),根据OE的解析式表示点G的坐标,表示PG的长,根据面积和可得四边形AOPE的面积,利用配方法可得其最大值;(3)存在四种情况:如图3,作辅助线,构建全等三角形,证明△OMP≌△PNF,根据OM=PN列方程可得点P的坐标;同理可得其他图形中点P的坐标.详解:(1)如图1,设抛物线与x轴的另一个交点为D,由对称性得:D(3,0),设抛物线的解析式为:y=a(x-1)(x-3),把A(0,3)代入得:3=3a,a=1,∴抛物线的解析式;y=x2-4x+3;(2)如图2,设P(m,m2-4m+3),∵OE平分∠AOB,∠AOB=90°,∴∠AOE=45°,∴△AOE是等腰直角三角形,∴AE=OA=3,∴E(3,3),易得OE的解析式为:y=x,过P作PG∥y轴,交OE于点G,∴G(m,m),∴PG=m-(m2-4m+3)=-m2+5m-3,∴S四边形AOPE=S△AOE+S△POE,=×3×3+PG•AE,=+×3×(-m2+5m-3),=-m2+m,=(m-)2+,∵-<0,∴当m=时,S有最大值是;(3)如图3,过P作MN⊥y轴,交y轴于M,交l于N,∵△OPF是等腰直角三角形,且OP=PF,易得△OMP≌△PNF,∴OM=PN,∵P(m,m2-4m+3),则-m2+4m-3=2-m,解得:m=或,∴P的坐标为(,)或(,);如图4,过P作MN⊥x轴于N,过F作FM⊥MN于M,同理得△ONP≌△PMF,∴PN=FM,则-m2+4m-3=m-2,解得:x=或;P的坐标为(,)或(,);综上所述,点P的坐标是:(,)或(,)或(,)或(,).点睛:本题属于二次函数综合题,主要考查了二次函数的综合应用,相似三角形的判定与性质以及解一元二次方程的方法,解第(2)问时需要运用配方法,解第(3)问时需要运用分类讨论思想和方程的思想解决问题.20、(1),;(1)存在,,,,,;(3)【分析】(1)由点A在双曲线上,可得k的值,进而得出双曲线的解析式.设(),过A作AP⊥x轴于P,BQ⊥y轴于Q,直线BQ和直线AP相交于点M.根据=3解方程即可得出k的值,从而得出点B的坐标,把A、B的坐标代入抛物线的解析式即可得到结论;(1)抛物线对称轴为,设,则可得出;;.然后分三种情况讨论即可;(3)设M(x,y).由MO=MA=MB,可求出M的坐标.作B关于y轴的对称点B'.连接B'M交y轴于Q.此时△BQM的周长最小.用两点间的距离公式计算即可.【详解】(1)由知:k=xy=1×4=4,∴.设().过A作AP⊥x轴于P,BQ⊥y轴于Q,直线BQ和直线AP相交于点M,则S△AOP=S△BOQ=1.令:,整理得:,解得:,.∵m<0,∴m=-1,故.把A、B带入解出:,∴.(1)∴抛物线的对称轴为.设,则,,.∵△POB为等腰三角形,∴分三种情况讨论:①,即,解得:,∴,;②,即,解得:,∴,;③,即,解得:∴;(3)设.∵,,,∴,,.∵,∴解得:,∴.作B关于y轴的对称点B'坐标为:(1,-1).连接B'M交y轴于Q.此时△BQM的周长最小.=MB'+MB.【点睛】本题是二次函数综合题.考查了用待定系数法求二次函数的解析式、二次函数的性质、轴对称-最值问题等.第(1)问的关键是割补法;第(1)问的关键是分类讨论;第(3)问的关键是求出M的坐标.21、1.【解析】试题分析:设长方体的底面长为x米,则底面宽为(x-2)米,由题意,得x(x-2)×1=15,解得:=5,=-3(舍去).底面宽为5-2=3米.矩形铁皮的面积为:(5+2)(3+2)=35,这张矩形铁皮的费用为:20×35=1元.故答案为1.考点:一元二次方程的应用.22、(1)y与x的函数关系式为y=-x+150;(2)该批发商若想获得4000元的利润,应将售价定为70元;(3)该产品每千克售价为85元时,批发商获得的利润w(元)最大,此时的最大利润为1元.【分析】(1)根据图表中的各数可得出y与x成一次函数关系,从而结合图表的数可得出y与x的关系式;(2)根据想获得4000元的利润,列出方程求解即可;(3)根据批发商获得的总利润w(元)=售量×每件利润可表示出w与x之间的函数表达式,再利用二次函数的最值可得出利润最大值.【详解】(1)设y与x的函数关系式为y=kx+b(k≠0),根据题意得,解得,故y与x的函数关系式为y=-x+150;(2)根据题意得(-x+150)(x-20)=4000,解得x1=70,x2=100>90(不合题意,舍去).故该批发商若想获得4000元的利润,应将售价定为70元;(3)w与x的函数关系式为:w=(-x+150)(x-20)=-x2+170x-3000=-(x-85)2+1,∵-1<0,∴当x=85时,w值最大,w最大值是1.∴该产品每千克售价为85元时,批发商获得的利润w(元)最大,此时的最大利润为1元.23、(1)详见解析;(2)详见解析;(3)详见解析.【分析】(1)根据折叠和正方形的性质结合相似三角形的判定定理即可得出答案;(2)设BE=x,利用勾股定理得出x的值,再利用相似三角形的性质证明即可得出答案;(3)设BM=x,AM=a-x,利用勾股定理和相似三角形的性质即可得出答案.【详解】证明:(1)∵四边形是正方形,∴,∴,∵为折痕,∴,∴,∴,在与中∵,,∴;(2)∵为中点,∴,设,则,在中,,∴,即,∴,∴,,由(1)知,,∴,∴,,∴;(3)设,则,,在中,,∴,即,解得:,由(1)知,,∴,∵,∴.【点睛】本题考查的是相似三角形的综合,涉及的知识点有折叠的性质、正方形的性质、勾股定理和相似三角形,难度系数较大.24、(1);;菱形;2;(2);(3),或,.【分析】(1)当y=0时可求出点A坐标为,B坐标为,AB=4,根据四边形四边相等可知该四边形为菱形,由可知抛物线顶点坐标为(1,-4),所以B,AB=8,即可得到为2;(2)惊喜度为1即,利用抛物线解析式分别求出各点坐标,从而得到AC和BD的长,计算即可求出m;(3)先求出顶点坐标,对称轴为直线,讨论对称轴直线是否在这个范围内,分3中情况分别求出最大值为16是m的值.【详解】解:(1)在抛物线上,当y=0时,,解得,,,∵点在点右边,∴A点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 龙岩学院《大数据分析实训》2023-2024学年第一学期期末试卷
- 淮北师范大学《设计软件基础》2023-2024学年第一学期期末试卷
- 贺州学院《燃气储存与输配》2023-2024学年第一学期期末试卷
- 重庆财经学院《时事政治述评》2023-2024学年第一学期期末试卷
- 浙江宇翔职业技术学院《编程语言与技术》2023-2024学年第一学期期末试卷
- 浙江工业大学之江学院《思想政治教育学原理》2023-2024学年第一学期期末试卷
- 抽凝改背压机组项目可行性研究报告模板-备案拿地
- 电路有哪三种工作状态
- 中北大学《学术交流技能》2023-2024学年第一学期期末试卷
- 长治学院《工程图学及应用》2023-2024学年第一学期期末试卷
- 中储粮黑龙江分公司社招2025年学习资料
- 2025年度爱读书学长策划的读书讲座系列合同2篇
- 广东省深圳市宝安区2024-2025学年八年级英语上学期1月期末英语试卷(含答案)
- 《设备房管理标准》课件
- 《交通运输行业安全生产监督检查工作指南 第2部分:道路运输》
- 初二生物期末质量分析及整改措施
- 苏州工业园区ESG发展白皮书
- 《边缘计算单元与交通信号控制机的数据通信标准编制说明》
- 《安防摄像机智能化指标要求和评估方法》
- 湖南省长沙市2024-2025学年高一数学上学期期末考试试卷
- 船舶行业维修保养合同
评论
0/150
提交评论