版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届宁夏银川市名校九上数学期末质量跟踪监视试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.下列一元二次方程中,没有实数根的是()A. B.C. D.2.在半径为的圆中,挖出一个半径为的圆面,剩下的圆环的面积为,则与的函数关系式为()A. B. C. D.3.如图,在中,已知点在上,点在上,,,下列结论中正确的是()A. B. C. D.4.在半径等于5cm的圆内有长为cm的弦,则此弦所对的圆周角为A.60° B.120° C.60°或120° D.30°或120°5.点M(2,-3)关于原点对称的点N的坐标是:()A.(-2,-3) B.(-2,3) C.(2,3) D.(-3,2)6.下列一元二次方程,有两个不相等的实数根的是()A. B.C. D.7.羽毛球运动是一项非常受人喜欢的体育运动.某运动员在进行羽毛球训练时,羽毛球飞行的高度与发球后球飞行的时间满足关系式,则该运动员发球后时,羽毛球飞行的高度为()A. B. C. D.8.如图,在同一坐标系中(水平方向是x轴),函数和的图象大致是()A. B. C. D.9.若,面积之比为,则相似比为()A. B. C. D.10.我们把宽与长的比等于黄金比的矩形称为黄金矩形.如图,在黄金矩形中,的平分线交边于点,于点,则下列结论错误的是()A. B. C. D.二、填空题(每小题3分,共24分)11.计算:=________.12.如图,点M是反比例函数()图象上任意一点,AB⊥y轴于B,点C是x轴上的动点,则△ABC的面积为______.13.如图,在中,,,点是边的中点,点是边上一个动点,当__________时,相似.14.抛物线经过点,则这条抛物线的对称轴是直线__________.15.如图,D是反比例函数(k<0)的图象上一点,过D作DE⊥x轴于E,DC⊥y轴于C,一次函数y=﹣x+m与的图象都经过点C,与x轴分别交于A、B两点,四边形DCAE的面积为4,则k的值为_______.16.已知2是关于x方程x2-2a=0的一个解,则2a-1的值是______________.17.如图,⊙O的直径AB=20cm,CD是⊙O的弦,AB⊥CD,垂足为E,OE:EB=3:2,则CD的长是________cm.18.若关于的一元二次方程有实数根,则的取值范围是_____.三、解答题(共66分)19.(10分)如图,在Rt△ABC中,∠C=90°,AB=10cm,BC=6cm.动点P,Q从点A同时出发,点P沿AB向终点B运动;点Q沿AC→CB向终点B运动,速度都是1cm/s.当一个点到达终点时,另一个点同时停止运动.设点P运动的时间为t(s),在运动过程中,点P,点Q经过的路线与线段PQ围成的图形面积为S(cm2).(1)AC=_________cm;(2)当点P到达终点时,BQ=_______cm;(3)①当t=5时,s=_________;②当t=9时,s=_________;(4)求S与t之间的函数解析式.20.(6分)如图,二次函数的图象经过点与.求a,b的值;点C是该二次函数图象上A,B两点之间的一动点,横坐标为,写出四边形OACB的面积S关于点C的横坐标x的函数表达式,并求S的最大值.21.(6分)国家规定,中、小学生每天在校体育活动时间不低于1h.为此,某区就“你每天在校体育活动时间是多少”的问题随机调查了辖区内300名初中学生.根据调查结果绘制成的统计图如图所示,其中A组为t<0.5h,B组为0.5h≤t<1h,C组为1h≤t<1.5h,D组为t≥1.5h.请根据上述信息解答下列问题:(1)本次调查数据的众数落在组内,中位数落在组内;(2)该辖区约有18000名初中学生,请你估计其中达到国家规定体育活动时间的人数.22.(8分)一次函数与反比例函数的图象相交于A(﹣1,4),B(2,n)两点,直线AB交x轴于点D.(1)求一次函数与反比例函数的表达式;(2)过点B作BC⊥y轴,垂足为C,连接AC交x轴于点E,求△AED的面积S.23.(8分)如图,一栋居民楼AB的高为16米,远处有一栋商务楼CD,小明在居民楼的楼底A处测得商务楼顶D处的仰角为60°,又在商务楼的楼顶D处测得居民楼的楼顶B处的俯角为45°.其中A、C两点分别位于B、D两点的正下方,且A、C两点在同一水平线上,求商务楼CD的高度.(参考数据:≈1.414,≈1.1.结果精确到0.1米)24.(8分)如图所示,在平面直角坐标系中,过点A(﹣,0)的两条直线分别交y轴于B、C两点,且B、C两点的纵坐标分别是一元二次方程x2﹣2x﹣3=0的两个根.(1)求线段BC的长度;(2)试问:直线AC与直线AB是否垂直?请说明理由;(3)若点D在直线AC上,且DB=DC,求点D的坐标.25.(10分)如图,已知,是一次函数与反比例函数图象的两个交点,轴于点,轴于点.(1)求一次函数的解析式及的值;(2)是线段上的一点,连结,若和的面积相等,求点的坐标.26.(10分)两会期间,记者随机抽取参会的部分代表,对他们某天发言的次数进行了统计,其结果如表,并绘制了如图所示的两幅不完整的统计图,请结合图中相关数据回答下列问题:发言次数nA0≤n<3B3≤n<6C6≤n<9D9≤n<12E12≤n<15F15≤n<18(1)求得样本容量为,并补全直方图;(2)如果会议期间组织1700名代表参会,请估计在这一天里发言次数不少于12次的人数;(3)已知A组发表提议的代表中恰有1为女士,E组发表提议的代表中只有2位男士,现从A组与E组中分别抽一位代表写报告,请用列表法或画树状图的方法,求所抽的两位代表恰好都是男士的概率.
参考答案一、选择题(每小题3分,共30分)1、A【解析】试题分析:A.∵△=25﹣4×2×4=﹣7<0,∴方程没有实数根,故本选项正确;B.∵△=36﹣4×1×4=0,∴方程有两个相等的实数根,故本选项错误;C.∵△=16﹣4×5×(﹣1)=36>0,∴方程有两个相等的实数根,故本选项错误;D.∵△=16﹣4×1×3=4>0,∴方程有两个相等的实数根,故本选项错误;故选A.考点:根的判别式.2、D【分析】根据圆环的面积=大圆的面积-小圆的面积,即可得出结论.【详解】解:根据题意:y=故选D.【点睛】此题考查的是圆环的面积公式,掌握圆环的面积=大圆的面积-小圆的面积是解决此题的关键.3、B【分析】由,得∠CMN=∠CNM,从而得∠AMB=∠∠ANC,结合,即可得到结论.【详解】∵,∴∠CMN=∠CNM,∴180°-∠CMN=180°-∠CNM,即:∠AMB=∠∠ANC,∵,∴,故选B.【点睛】本题主要考查相似三角形的判定定理,掌握“对应边成比例,夹角相等的两个三角形相似”是解题的关键.4、C【分析】根据题意画出相应的图形,由OD⊥AB,利用垂径定理得到D为AB的中点,由AB的长求出AD与BD的长,且得出OD为角平分线,在Rt△AOD中,利用锐角三角函数定义及特殊角的三角函数值求出∠AOD的度数,进而确定出∠AOB的度数,利用同弧所对的圆心角等于所对圆周角的2倍,即可求出弦AB所对圆周角的度数.【详解】如图所示,∵OD⊥AB,∴D为AB的中点,即AD=BD=,在Rt△AOD中,OA=5,AD=,∴sin∠AOD=,又∵∠AOD为锐角,∴∠AOD=60°,∴∠AOB=120°,∴∠ACB=∠AOB=60°,又∵圆内接四边形AEBC对角互补,∴∠AEB=120°,则此弦所对的圆周角为60°或120°.故选C.【点睛】此题考查了垂径定理,圆周角定理,特殊角的三角函数值,以及锐角三角函数定义,熟练掌握垂径定理是解本题的关键.5、B【解析】试题解析:已知点M(2,-3),则点M关于原点对称的点的坐标是(-2,3),故选B.6、B【分析】分别计算出各选项中方程根的判别式的值,找出大于0的选项即可得答案.【详解】A.方程x2+6x+9=0中,△=62-4×1×9=0,故方程有两个相等的实数根,不符合题意,B.方程中,△=(-1)2-4×1×0=1>0,故方程有两个不相等的实数根,符合题意,C.方程可变形为(x+1)2=-1<0,故方程没有实数根,不符合题意,D.方程中,△=(-2)2-4×1×3=-8<0,故方程没有实数根,不符合题意,故选:B.【点睛】本题考查一元二次方程根的判别式,对于一元二次方程ax2+bx+c=0(a≠0),根的判别式为△=b2-4ac,当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根,当△<0时,方程没有实数根.7、C【分析】根据函数关系式,求出t=1时的h的值即可.【详解】t=1s时,h=-1+2+1.5=2.5故选C.【点睛】本题考查了二次函数的应用,知道t=1时满足函数关系式是解题的关键.8、A【分析】根据一次函数及反比例函数的图象与系数的关系作答.【详解】解:A、由函数y=的图象可知k>0与y=kx+3的图象k>0一致,正确;B、由函数y=的图象可知k>0与y=kx+3的图象k>0,与3>0矛盾,错误;C、由函数y=的图象可知k<0与y=kx+3的图象k<0矛盾,错误;D、由函数y=的图象可知k>0与y=kx+3的图象k<0矛盾,错误.故选A.【点睛】本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.9、C【分析】根据相似三角形的面积比等于相似比的平方可直接得出结果.【详解】解:∵两个相似三角形的面积比为9:4,
∴它们的相似比为3:1.
故选:C.【点睛】此题主要考查了相似三角形的性质:相似三角形的面积比等于相似比的平方.10、C【分析】设,则,根据黄金矩形的概念结合图形计算,据此判断即可.【详解】因为矩形宽与长的比等于黄金比,因此,设,则,则选项A.,B.,D.正确,C.选项中等式,,∴;故选:C.【点睛】本题考查的是黄金分割、矩形的性质,掌握黄金比值为是解题的关键.二、填空题(每小题3分,共24分)11、-1【分析】根据零指数幂及特殊角的三角函数值计算即可.【详解】解:原式=1-4×=-1,故答案为:-1.【点睛】本题考查了实数的运算、零指数幂、特殊角的三角函数值,属于基础题,解答本题的关键是熟练每部分的运算法则.12、1【解析】解:设A的坐标是(m,n),则mn=2,则AB=m,△ABC的AB边上的高等于n,则△ABC的面积=mn=1.故答案为1.点睛:本题主要考查了反比例函数的系数k的几何意义,△ABC的面积=|k|,本知识点是中考的重要考点,同学们应高度关注.13、【分析】直接利用,找到对应边的关系,即可得出答案.【详解】解:当时,
则,
∵,点是边的中点,
∴∵,∴则综上所述:当BQ=时,.
故答案为:.【点睛】此题主要考查了相似三角形的性质,得到对应边成比例是解答此题的关键.14、【分析】根据抛物线的轴对称性,即可得到答案.【详解】∵抛物线经过点,且点,点关于直线x=1对称,∴这条抛物线的对称轴是:直线x=1.故答案是:.【点睛】本题主要考查二次函数的图象与性质,掌握抛物线的轴对称性,是解题的关键.15、-1【详解】解:∵的图象经过点C,∴C(0,1),将点C代入一次函数y=-x+m中,得m=1,∴y=-x+1,令y=0得x=1,∴A(1,0),∴S△AOC=×OA×OC=1,∵四边形DCAE的面积为4,∴S矩形OCDE=4-1=1,∴k=-1故答案为:-1.16、5.【分析】把x=2代入已知方程可以求得2a=6,然后将其整体代入所求的代数式进行解答.【详解】解:∵x=2是关于x的方程x2-2a=0的一个解,∴×22-2a=0,即6-2a=0,则2a=6,∴2a-1=6-1=5.故答案为5..【点睛】本题考查了一元二次方程的解的定义.一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.17、1【分析】根据垂径定理与勾股定理即可求出答案.【详解】解:连接OC,设OE=3x,EB=2x,
∴OB=OC=5x,
∵AB=20cm
∴10x=20
∴x=2cm,∴OC=10cm,OE=6cm,
∴由勾股定理可知:CE=cm,
∴CD=2CE=1cm,
故答案为:1.【点睛】本题考查垂径定理的应用,解题的关键是根据勾股定理求出CE的长度,本题属于基础题型.18、且k≠1.【分析】根据一元二次方程的定义和判别式的意义得到且,然后求出两个不等式的公共部分即可.【详解】解:根据题意得且,
解得:且k≠1.
故答案是:且k≠1.【点睛】本题考查了一元二次方程ax2+bx+c=1(a≠1)的根的判别式△=b2-4ac:当△>1,方程有两个不相等的实数根;当△=1,方程有两个相等的实数根;当△<1,方程没有实数根.三、解答题(共66分)19、(1)8;(2)4;(3)①,②22;(4)【分析】(1)根据勾股定理求解即可;(2)先求出点P到达中点所需时间,则可知点Q运动路程,易得CQ长,;(3)①作PD⊥AC于D,可证△APD∽△ABC,利用相似三角形的性质可得PD长,根据面积公式求解即可;②作PE⊥AC于E,可证△PBE∽△ABC,利用相似三角形的性质可得PE长,用可得s的值;(4)当0<t≤8时,作PD⊥AC于D,可证△APD∽△ABC,可用含t的式子表示出PD的长,利用三角形面积公式可得s与t之间的函数解析式;当8<t≤10时,作PE⊥AC于E,可证△PBE∽△ABC,利用相似三角形的性质可用含t的式子表示出PE长,用可得s与t之间的函数解析式.【详解】解:(1)在Rt△ABC中,由勾股定理得(2)设点P运动到终点所需的时间为t,路程为AB=10cm,则点Q运动的路程为10cm,即cm所以当点P到达终点时,BQ=4cm.(3)①作PD⊥AC于D,则∵∠A=∠A.∠ADP=∠C=90°,∴△APD∽△ABC.∴.即∴.∴.②如图,作PE⊥AC于E,则∵∠B=∠B.∠BEP=∠C=90°,∴△PBE∽△ABC.∴.即.∴.∴.(4)当0<t≤8时,如图①.作PD⊥AC于D.∵∠A=∠A.∠ADP=∠C=90°,∴△APD∽△ABC.∴.即.∴.∴.当8<t≤10时,如图②.作PE⊥AC于E.∵∠B=∠B.∠BEP=∠C=90°,∴△PBE∽△ABC.∴.即.∴.∴.综上所述:【点睛】本题考查了二次函数在三角形动点问题中的应用,涉及的知识点有勾股定理、相似三角形的判定与性质,灵活的应用相似三角形对应线段成比例的性质求线段长是解题的关键.20、(1)(2)最大值为1.
【分析】(1)将与代入,用待定系数法可求得;(2)过A作x轴的垂直,垂足为,连接CD、CB,过C作,轴,垂足分别为E,F,则,关于x的函数表达式为,再求二次函数的最值即可.【详解】解:将与代入,得,解得:;如图,过A作x轴的垂直,垂足为,连接CD、CB,过C作,轴,垂足分别为E,F,;;,则,关于x的函数表达式为,,当时,四边形OACB的面积S有最大值,最大值为1.【点睛】本题考核知识点:二次函数与几何.解题关键点:数形结合列出面积表达式,求二次函数的最值.21、(1)B,C;(2)1.【分析】(1)根据中位数的概念,中位数应是第150、151人时间的平均数,分析可得答案;(2)首先计算样本中达到国家规定体育活动时间的频率,再进一步估计总体达到国家规定体育活动时间的人数.【详解】(1)众数在B组.根据中位数的概念,中位数应是第150、151人时间的平均数,分析可得其均在C组,故本次调查数据的中位数落在C组.故答案为B,C;(2)达国家规定体育活动时间的人数约1800×=1(人).答:达国家规定体育活动时间的人约有1人.考点:频数(率)分布直方图;用样本估计总体;中位数;众数.22、(1),;(2).【分析】(1)把A(﹣1,4)代入反比例函数可得m的值,再把B(2,n)代入反比例函数的解析式得到n的值;然后利用待定系数法确定一次函数的解析式;(2)由BC⊥y轴,垂足为C以及B点坐标确定C点坐标,可求出直线AC的解析式,进一步求出点E的坐标,然后计算得出△AED的面积S.【详解】解:(1)把A(﹣1,4)代入反比例函数得,m=﹣1×4=﹣4,所以反比例函数的解析式为,把B(2,n)代入得,2n=﹣4,解得n=﹣2,所以B点坐标为(2,﹣2),把A(﹣1,4)和B(2,﹣2)代入一次函数,得:,解得:,所以一次函数的解析式为;(2)∵BC⊥y轴,垂足为C,B(2,﹣2),∴C点坐标为(0,﹣2).设直线AC的解析式为,∵A(﹣1,4),C(0,﹣2),∴,解得:,∴直线AC的解析式为,当y=0时,﹣6x﹣2=0,解答x=,∴E点坐标为(,0),∵直线AB的解析式为,∴直线AB与x轴交点D的坐标为(1,0),∴DE=,∴△AED的面积S==.【点睛】本题考查1.反比例函数与一次函数的交点问题;2.综合题,利用数形结合思想解题是关键.23、商务楼的高度为37.9米.【解析】首先分析图形,根据题意构造直角三角形.本题涉及两个直角三角形,即Rt△BED和Rt△DAC,利用已知角的正切分别计算,可得到一个关于AC的方程,从而求出DC.【详解】过点B作BE⊥CD与点E,由题意可知∠DBE=,∠DAC=,CE=AB=16设AC=x,则,BE=AC=x∵∵∴BE=DE∴∴∴∴答:商务楼的高度为37.9米.24、(1)线段BC的长度为4;(2)AC⊥AB,理由见解析;(3)点D的坐标为(﹣2,1)【解析】(1))解出方程后,即可求出B、C两点的坐标,即可求出BC的长度;
(2)由A、B、C三点坐标可知OA2=OC•OB,所以可证明△AOC∽△BOA,利用对应角相等即可求出∠CAB=90°;
(3)容易求得直线AC的解析式,由DB=DC可知,点D在BC的垂直平分线上,所以D的纵坐标为1,将其代入直线AC的解析式即可求出D的坐标;【详解】解:(1)∵x2﹣2x﹣3=0,∴x=3或x=﹣1,∴B(0,3),C(0,﹣1),∴BC=4,(2)∵A(﹣,0),B(0,3),C(0,﹣1),∴OA=,OB=3,OC=1,∴OA2=OB•OC,∵∠AOC=∠BOA=90°,∴△AOC∽△BOA,∴∠CAO=∠ABO,∴∠CAO+∠BAO=∠ABO+∠BAO=90°,∴∠BAC=90°,∴AC⊥AB;(3)设直线AC的解析式为y=kx+b,把A(﹣,0)和C(0,﹣1)代入y=kx+b,∴,解得:,∴直线AC的解析式为:y=﹣x﹣1,∵DB=DC,∴点D在线段BC的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年瓶装液化气长途运输协议2篇
- 2024年技术研发合同:技术创新共享成果3篇
- 二零二四年度物联网平台搭建与运维合同2篇
- 铝合金产品联合开发合同
- 房屋共同保险合同
- 高科技企业孵化担保规定
- 租赁设备合同效力论证
- 二零二四年度租赁设备与技术支持合同3篇
- 船舶与海洋工程教师招聘协议
- 电子商务物流信息安全办法
- 不断提升能源利用效率做好“双碳”工作心得体会
- 住房公积金购房提取承诺授权书模板
- 新版GMP变更控制详解
- 制糖蒸发工序操作
- 地下管线保护方案及应急预案
- 《中国书法基础知识讲解》PPT课件
- 《逻辑学》第五章-词项逻辑
- 头痛的国际分类(第三版)中文
- 小学英语单词分类全集
- 【课件】5.3 三角函数的诱导公式(共19张PPT)
- 学生学习过程评价量表
评论
0/150
提交评论