名校联盟2025届高一数学第二学期期末质量跟踪监视模拟试题含解析_第1页
名校联盟2025届高一数学第二学期期末质量跟踪监视模拟试题含解析_第2页
名校联盟2025届高一数学第二学期期末质量跟踪监视模拟试题含解析_第3页
名校联盟2025届高一数学第二学期期末质量跟踪监视模拟试题含解析_第4页
名校联盟2025届高一数学第二学期期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

名校联盟2025届高一数学第二学期期末质量跟踪监视模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在△ABC中,,P是BN上的一点,若,则实数m的值为A.3 B.1 C. D.2.设,是两条不同的直线,,,是三个不同的平面,给出下列四个命题:①若,,则②若,,,则③若,,则④若,,则其中正确命题的序号是()A.①和② B.②和③ C.③和④ D.①和④3.已知满足,则()A.1 B.3 C.5 D.74.若将一个质点随机投入如图所示的长方形ABCD中,其中AB=2,BC=1,则质点落在以AB为直径的半圆内的概率是()A. B. C. D.5.已知函数,函数的最小值等于()A. B. C.5 D.96.已知数列的通项为,我们把使乘积为整数的叫做“优数”,则在内的所有“优数”的和为()A.1024 B.2012 C.2026 D.20367.设是复数,从,,,,,,中选取若干对象组成集合,则这样的集合最多有()A.3个元素 B.4个元素 C.5个元素 D.6个元素8.直线在轴上的截距为,在轴上的截距为,则()A. B. C. D.9.已知正实数满足,则的最大值为()A.2 B. C.3 D.10.已知,则的最小值为()A.2 B.0 C.-2 D.-4二、填空题:本大题共6小题,每小题5分,共30分。11.已知,,,的等比中项是1,且,,则的最小值是______.12.已知,则的最小值为_______.13.某餐厅的原料支出与销售额(单位:万元)之间有如下数据,根据表中提供的数据,用最小二乘法得出与的线性回归方程,则表中的值为_________.245682535557514.平面四边形中,,则=_______.15.设为使互不重合的平面,是互不重合的直线,给出下列四个命题:①②③④若;其中正确命题的序号为.16.过点且与直线l:垂直的直线方程为______.(请用一般式表示)三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在中,成等差数列,分别为的对边,并且,,求.18.已知函数,其中常数;(1)令,判定函数的奇偶性,并说明理由;(2)令,将函数图像向右平移个单位,再向上平移1个单位,得到函数的图像,对任意,求在区间上零点个数的所有可能值;19.某工厂有工人1000名,其中250名工人参加过短期培训(称为A类工人),另外750名工人参加过长期培训(称为B类工人).现用分层抽样方法(按A类,B类分二层)从该工厂的工人中共抽查100名工人,调查他们的生产能力(生产能力指一天加工的零件数)(1)A类工人中和B类工人各抽查多少工人?(2)从A类工人中抽查结果和从B类工人中的抽查结果分别如下表1和表2:表1:生产能力分组人数48x53表2:生产能力分组人数6y3618①先确定x,y,再在答题纸上完成下列频率分布直方图.就生产能力而言,A类工人中个体间的差异程度与B类工人中个体间的差异程度哪个更小?(不用计算,可通过观察直方图直接回答结论)②分别估计A类工人和B类工人生产能力的平均数,并估计该工厂工人和生产能力的平均数(同一组中的数据用该区间的中点值作代表)图1A类工人生产能力的频率分布直方图图2B类工人生产能力的频率分布直方图20.已知三棱柱中,三个侧面均为矩形,底面为等腰直角三角形,,点为棱的中点,点在棱上运动.(1)求证;(2)当点运动到某一位置时,恰好使二面角的平面角的余弦值为,求点到平面的距离;(3)在(2)的条件下,试确定线段上是否存在一点,使得平面?若存在,确定其位置;若不存在,说明理由.21.求适合下列条件的直线方程:经过点,倾斜角等于直线的倾斜角的倍;经过点,且与两坐标轴围成一个等腰直角三角形。

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】分析:根据向量的加减运算法则,通过,把用和表示出来,可得的值.详解:如图:∵,,

又三点共线,故得.

故选C..点睛:本题考查实数值的求法,是基础题,解题时要认真审题,注意平面向量加法法则的合理运用.2、A【解析】

根据线面平行性质定理,结合线面垂直的定义,可得①是真命题;根据面面平行的性质结合线面垂直的性质,可得②是真命题;在正方体中举出反例,可得平行于同一个平面的两条直线不一定平行,垂直于同一个平面和两个平面也不一定平行,可得③④不正确.由此可得本题的答案.【详解】解:对于①,因为,所以经过作平面,使,可得,又因为,,所以,结合得.由此可得①是真命题;对于②,因为且,所以,结合,可得,故②是真命题;对于③,设直线、是位于正方体上底面所在平面内的相交直线,而平面是正方体下底面所在的平面,则有且成立,但不能推出,故③不正确;对于④,设平面、、是位于正方体经过同一个顶点的三个面,则有且,但是,推不出,故④不正确.综上所述,其中正确命题的序号是①和②故选:【点睛】本题给出关于空间线面位置关系的命题,要我们找出其中的真命题,着重考查了线面平行、面面平行的性质和线面垂直、面面垂直的判定与性质等知识,属于中档题.3、B【解析】

已知两个边和一个角,由余弦定理,可得。【详解】由题得,,,代入,化简得,解得(舍)或.故选:B【点睛】本题考查用余弦定理求三角形的边,是基础题。4、B【解析】试题分析:本题是几何概型问题,矩形面积2,半圆面积,所以质点落在以AB为直径的半圆内的概率是,故选B.考点:几何概型.5、C【解析】

先将化为,由基本不等式即可求出最小值.【详解】因为,当且仅当,即时,取等号.故选C【点睛】本题主要考查利用基本不等式求函数的最值问题,需要先将函数化为能用基本不等式的形式,即可利用基本不等式求解,属于基础题型.6、C【解析】

根据优数的定义,结合对数运算,求得的范围,再用等比数列的前项和公式进行求和.【详解】根据优数的定义,令,则可得令,解得则在内的所有“优数”的和为:故选:C.【点睛】本题考查新定义问题,本质是考查对数的运算,等比数列前项和公式.7、A【解析】

设复数分别计算出以上式子,根据集合的元素互异性,可判断答案.【详解】解:设复数,,,,故由以上的数组成的集合最多有,,这个元素,故选:【点睛】本题考查复数的运算及相关概念,属于中档题.8、B【解析】

令求,利用求.【详解】令,由得:,所以令,由得:,所以,故选B.【点睛】本题考查了直线的截距问题,直线方程,令解出,得到直线的纵截距.令解出,得到直线的横截距.9、B【解析】

由,然后由基本不等式可得最大值.【详解】,当且仅当,即时,等号成立.∴所求最大值为.故选:B.【点睛】本题考查用基本不等式求最值,注意基本不等式求最值的条件:一正二定三相等.10、D【解析】

根据不等式组画出可行域,借助图像得到最值.【详解】根据不等式组画出可行域得到图像:将目标函数化为,根据图像得到当目标函数过点时取得最小值,代入此点得到z=-4.故答案为:D.【点睛】利用线性规划求最值的步骤:(1)在平面直角坐标系内作出可行域;(2)考虑目标函数的几何意义,将目标函数进行变形.常见的类型有截距型(型)、斜率型(型)和距离型(型);(3)确定最优解:根据目标函数的类型,并结合可行域确定最优解;(4)求最值:将最优解代入目标函数即可求出最大值或最小值。二、填空题:本大题共6小题,每小题5分,共30分。11、4【解析】

,的等比中项是1,再用均值不等式得到答案.【详解】,的等比中项是1当时等号成立.故答案为4【点睛】本题考查了等比中项,均值不等式,意在考查学生的综合应用能力.12、【解析】

运用基本不等式求出结果.【详解】因为,所以,,所以,所以最小值为【点睛】本题考查了基本不等式的运用求最小值,需要满足一正二定三相等.13、60【解析】

由样本中心过线性回归方程,求得,,代入即可求得【详解】由题知:,,将代入得故答案为:60【点睛】本题考查样本中心与最小二乘法公式的关系,易错点为将直接代入求解,属于中档题14、【解析】

先求出,再求出,再利用余弦定理求出AD得解.【详解】依题意得中,,故.在中,由正弦定理可知,,得.在中,因为,故.则.在中,由余弦定理可知,,即.得.【点睛】本题主要考查正弦定理余弦定理解三角形,意在考查学生对这些知识的理解掌握水平,属于中档题.15、④【解析】试题分析:根据线面平行的判定定理,面面平行的判定定理,面面平行的性质定理,及面面垂直的性质定理,对题目中的四个结论逐一进行分析,即可得到答案.解:当m∥n,n⊂α,,则m⊂α也可能成立,故①错误;当m⊂α,n⊂α,m∥β,n∥β,m与n相交时,α∥β,但m与n平行时,α与β不一定平行,故②错误;若α∥β,m⊂α,n⊂β,则m与n可能平行也可能异面,故③错误;若α⊥β,α∩β=m,n⊂α,n⊥m,由面面平行的性质,易得n⊥β,故④正确故答案为④考点:本题考查的知识点是平面与平面之间的位置关系,直线与平面之间的位置关系.点评:熟练掌握空间线与线,线与面,面与面之间的关系的判定方法及性质定理,是解答本题的关键,属于基础题.16、【解析】

与直线垂直的直线方程可设为,再将点的坐标代入运算即可得解.【详解】解:与直线l:垂直的直线方程可设为,又该直线过点,则,则,即点且与直线l:垂直的直线方程为,故答案为:.【点睛】本题考查了与已知直线垂直的直线方程的求法,属基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、或.【解析】

先算出,从而得到,也就是,结合面积得到,再根据余弦定理可得,故可解得的大小.【详解】∵成等差数列,∴,又,∴,∴.所以,所以,①又,∴.②由①②,得,,而由余弦定理可知∴即.③联立③与②解得或,综上,或.【点睛】三角形中共有七个几何量(三边三角以及外接圆的半径),一般地,知道其中的三个量(除三个角外),可以求得其余的四个量.(1)如果知道三边或两边及其夹角,用余弦定理;(2)如果知道两边即一边所对的角,用正弦定理(也可以用余弦定理求第三条边);(3)如果知道两角及一边,用正弦定理.18、(1)非奇非偶,理由见解析;(2)21或20个.【解析】

(1)先利用辅助角公式化简,再利用和可判断为非奇非偶函数.(2)求出的解析式后结合函数的图像、周期及给定区间的特点可判断在给定的范围上的零点的个数.【详解】(1),则,故不是奇函数,又,,故不是偶函数.综上,为非奇非偶函数.(2),的图象如图所示:令,则,则或,,也就是或者,,所以在形如的区间上恰有两个不同零点.把区间分成10个小区间,它们分别为:,及,根据函数的图像可知:前9个区间的长度恰为一个周期且左闭右开,故每个区间恰有两个不同的零点,最后一个区间的长度恰为一个周期且为闭区间,故该区间上可能有两个不同的零点或3个不同的零点.故在区间上可有21个或者20个零点.【点睛】本题考查正弦型函数的奇偶性、正弦型函数在给定范围上的零点个数,注意说明一个函数不是奇函数或不是偶函数,可通过反例来说明,而零点个数的判断则需综合考虑给定区间的长度、开闭情况及函数的周期.19、(1)25,75(2)①5,15,直方图见解析,B类②123,133.8,131.1【解析】

(1)先计算抽样比为,进而可得各层抽取人数(2)①类、类工人人数之比为,按此比例确定两类工人需抽取的人数,再算出和即可.画出频率分布直方图,从直方图可以判断:类工人中个体间的差异程度更小②取每个小矩形的横坐标的中点乘以对应矩形的面积相加即得平均数.【详解】(1)由已知可得:抽样比,故类工人中应抽取:人,类工人中应抽取:人,(2)①由题意知,得,,得.满足条件的频率分布直方图如下所示:从直方图可以判断:类工人中个体间的差异程度更小.②,类工人生产能力的平均数,类工人生产能力的平均数以及全工厂工人生产能力的平均数的估计值分别为123,133.8和131.1【点睛】本题考查等可能事件、相互独立事件的概率、频率分布直方图的理解以及利用频率分布直方图求平均数等知识、考查运算能力.20、(1)见解析;(2);(3)存在,为中点.【解析】

(1)以CB为x轴,CA为y轴,CC1为z轴,C为原点建立坐标系,设E(m,0,2),要证A1C⊥AE,可证,只需证明,利用向量的数量积运算即可证明;(2)分别求出平面EA1D、平面A1DB的一个法向量,由两法向量夹角余弦值的绝对值等于,解得m值,由此可得答案;(3)在(2)的条件下,设F(x,y,0),可知与平面A1DB的一个法向量平行,由此可求出点F坐标,进而求出||,即得答案.【详解】(1)以CB为x轴,CA为y轴,CC1为z轴,C为原点建立坐标系,设E(m,0,2),C(0,0,0),A(0,2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论